SRC: Celebrating 30 Years

Working together we are formidable!

Authors

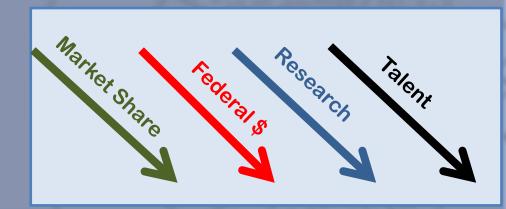
Dr. Ralph K. Cavin, III Dr. Victor V. Zhirnov Suzanne M. Webb

Outline

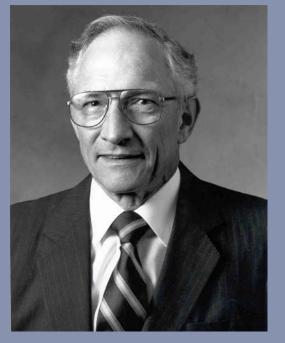
- The Early Years
- The Enduring Role of Citations
- Research Funding History
- Origins of the Research Agenda
- Industrial Liaison Program
- Industry Feedback on Research
- Our University Partners
- Examples of Impact on our Members
- Celebrating Research Accomplishments
- SRC Start-Ups and Intellectual Property
- Forecasting Future Member Technologies from the Current Portfolio
- Challenges and Opportunities
- Back-up Citation Data

The Semiconductor Environment in 1982

U.S. semiconductor companies were rapidly losing market share and federal support for silicon research was decreasing.



As a result, the pipeline of talent was drying up.


Very little silicon-oriented research was being conducted in universities.

• Less than 100 students and faculty conducted silicon research.

What happened?

 In 1982, the Semiconductor Industry Association formed the SRC to launch and manage relevant and collaborative university research programs.

 Robert Noyce of Intel wrote a personal check to Larry Sumney, the SRC's founding President, to begin SRC operations.

SRC's Charter (1982)

Objectives:

- Define relevant research directions
- Explore potentially important new technologies (and transfer results to industry)
- Generate a pool of experienced faculty & relevantly educated students

Visionary Leadership for SRC

First SRC Board Chair

Erich Bloch

SIA Board

Robert Noyce

SRC IP Policy

Jack Kilby

Founding SRC Companies

Honeywell

G General Instrument



Semiconductor Landscape in 1982


256 Kbit DRAM 2 μm features

64 Kbit UV-EPROM No flash memory as we know it today

SR

10⁵ transistors/MPU 10 MHz 1.5 μm features

What 30 Years of Progress Enabled

1976: Best available storage technology was the **IBM 3350**

SRO

80Gb cost \$9,000,000 !!! in 1976 dollars

2006

126 IBM 3350's = storage in **1 iPod**

iPod(5G) 80GB

80Gb cost \$350 in 2006 dollars

1982: SRC 'Springs into Action'

166 proposals received

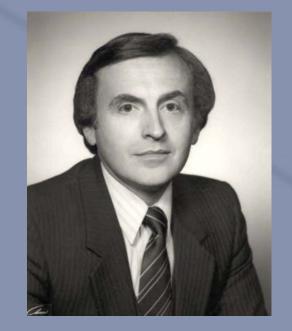
> 80 proposals funded

Three research centers were formed

SRC-CMU Center of Excellence for CAD


Steve Director, CMU

SRC-UC/Berkeley Center of Excellence for CAD


Don Pederson, UC-Berkeley

SRC-Cornell Center of Excellence for Microscience & Technology

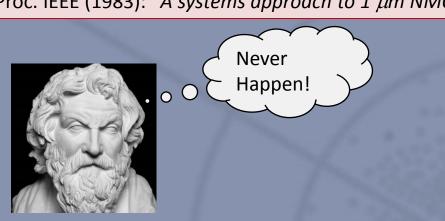
Noel MacDonald & Jeffrey Frey, Cornell

SRC Senior Staff (Circa 1982)

SR

Larry Sumney

Robert Burger & Richard Alberts


Example 10-year SRC Research Goals (1984)

- ✓ 256Mb DRAM with 0.25 micron minimum feature size
- ✓ 50 ps logic gate delay and switching energy of 5 fJ
- Six person-month design time for error-free layout of chips with 10⁸ transistors
- ✓ Tests that enable less than 1 in 10⁶ defective devices
- ✓ 5X increase in manufacturing productivity

SRC Goals Were Sometimes Met With Disbelief

 "0.25 micron minimum features – doesn't that violate the laws of physics?"

> "It is doubtful that one can scale the device dimensions to <u>below 0.1 μm</u> and gain any advantage in circuit performance because of several **basic** *limitations.*" Proc. IEEE (1983): "A systems approach to 1 μm NMOS"

• Working together, we achieved the 1984 SRC goals!

What is a citation?

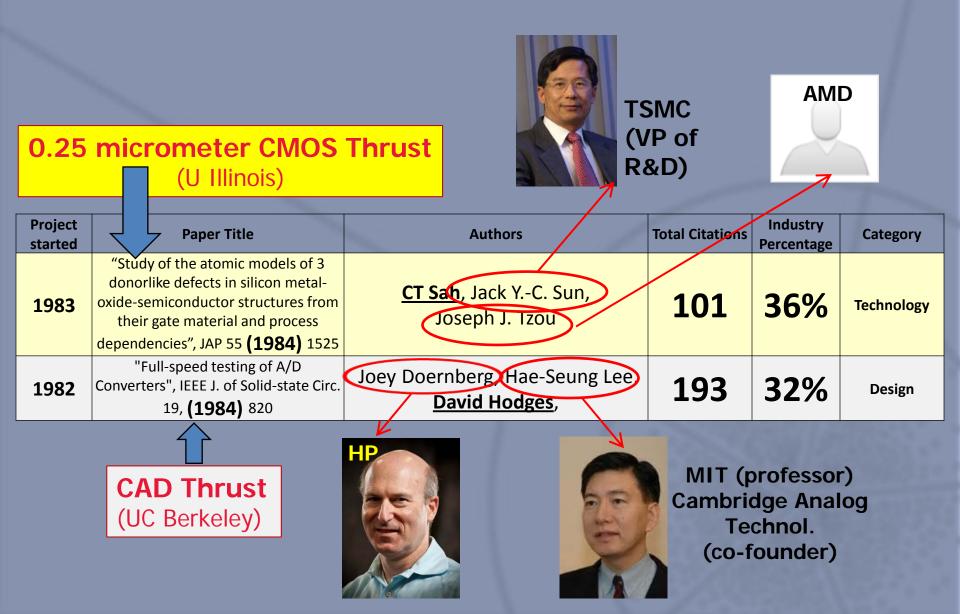
A citation is a reference to an earlier paper by subsequent authors.

- Only about 2% of all papers achieve 100 citations.
- 100 citations qualifies an SRC paper for "Influential Status" comparable to Nobel Laureates in the semiconductor field.
- Papers that continue to receive citations long after they were published are very rare.

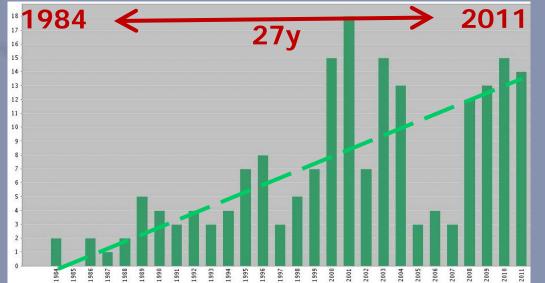
Times Higher Education World University Rankings since 2010 uses citations as a ranking indicator – **32.5% weightings.**

SRC uses industrial citations as a 'quality indicator' for SRCfunded research.

SRC

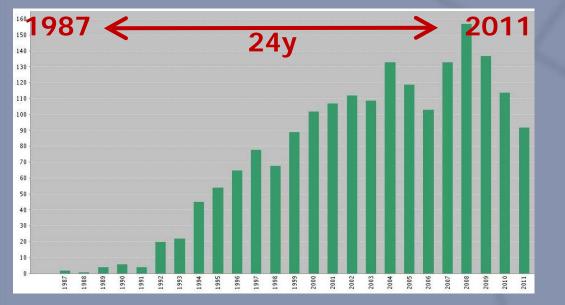

SRC Influential Publications

 Currently, 210 SRC- supported papers have been identified to have received over 100 citations.


 Almost 2/3 of SRC's Influential Publications have received at least 15% industry citations.

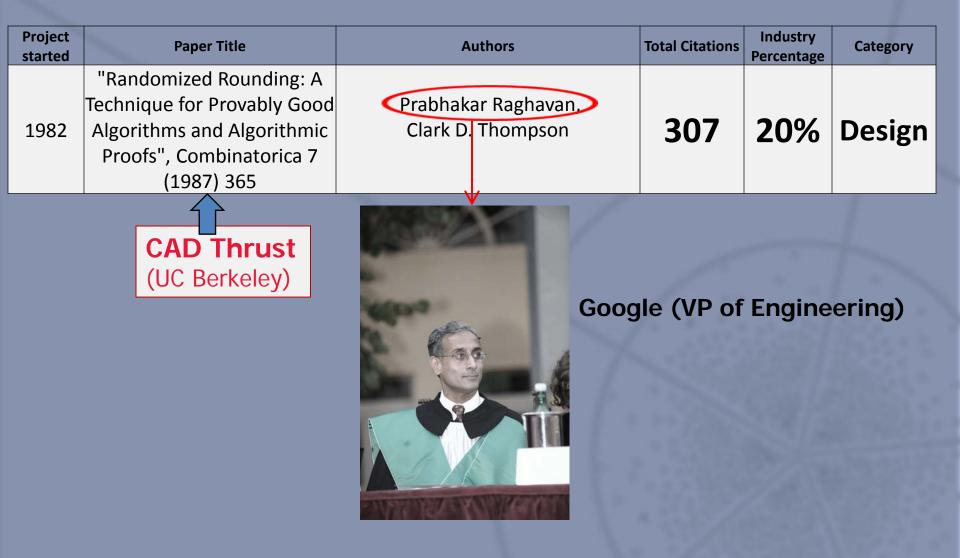
Early Success (1984)

S



Foundational work is long lasting!

Decades of growing interest!


"Full-speed testing of A/D Converters", IEEE J. of Solid-state Circ. 19, (1984)

"Graph-based algorithms for Boolean function manipulation", IEEE Trans on Comp. 35 (1986)

Early Research on Algorithms

SR

Basic Research on MOSFETs

Project started	Paper Title	Authors	Total Citations	Industry Percentage	Category
1992	"Measurement and modeling of self- heating in SOI NMOSFET's", IEEE TED 41 (1994) 69	Lisa T. Su, ames, E. Chung, Dimitri Antoniadis, Ken Goodson, Markus Flik	156	35%	Technology
	(MIT)				

Lisa Su, a student who worked on an SRC research project with Dimitri Antoniadis, brought her experience to Texas Instruments, IBM (VP), Freescale (SVP & CTO) and AMD (President & CEO).

Return to Outline

SRC Pathways for Collaboration

Knowledge creation for information technologies

This chart represents how SRC impacts, and is impacted by, its member companies. SRC Member Companies and Government Partners determine Industry Needs, provide Funding to Universities, monitor the research through regular Reviews and establish partnerships through Industrial Liaisons.

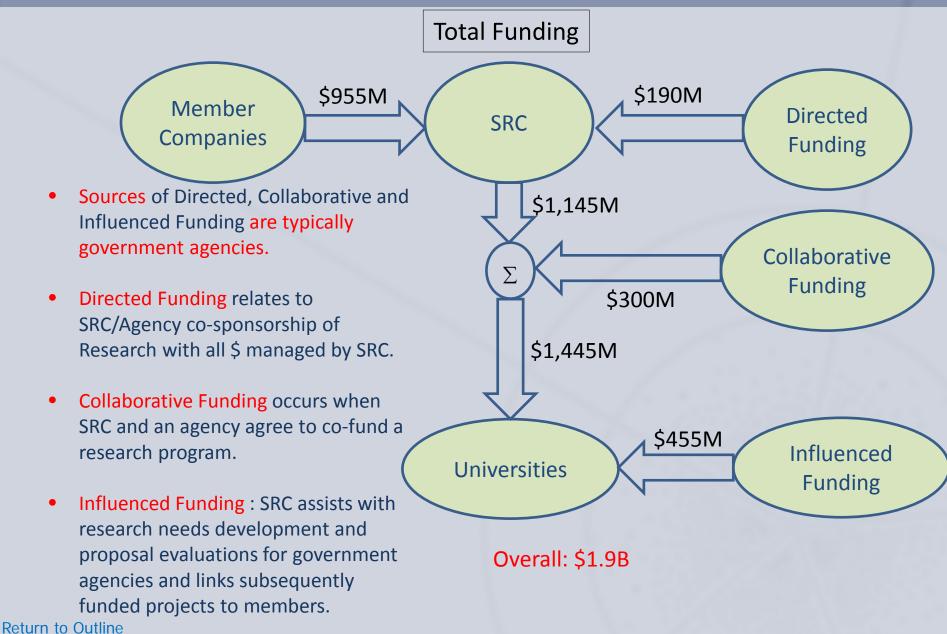
SRC Member Companies receive Research Results, relevantly educated and experienced Graduates, access to Publications, Intellectual Property and Spin-offs.

These outputs benefit the semiconductor industry, and **Society**, as a whole. Return to Outline

Research Funding

- Enables steady stream of relevant concepts for industry
- Attracts outstanding students to semiconductor studies

Return to Outline


History of SRC Funding

SR

SRC Funding Pathways – Actual \$

SR

The SRC Research Agenda

How is it defined?

Return to Outline

SRO

SRC Technical Advisory Boards

- Currently there are 1133
 members of Technical
 Advisory Boards (TABs)
 who define research
 needs/review projects.
- There have been 1704
 distinct TAB members
 across 52 different TABs
 throughout the SRC history.

Roadmapping: 15 Year Forecast for Technology Requirements

NTRS: National Technology

Roadmap for Semiconductors

1998

1992

NTRS

SIA/SRC/

Over 1000 international engineers & scientists are involved!

1990

2000

Microtech

Return to Outline

SSC

1984, SRC Sets 10 Yr

goals

Making the Partnership Real!

The Industrial Liaison Program

Return to Outline

SR

Industrial Liaison Program

- SRC works to build **partnerships** between industry and the university.
- The Industrial Liaison Program is a key element:
 - Specialists from industry serve as Friends of the Research.
 - IL's can provide technical guidance, access to industry facilities for SRC research, serve on graduate committees, author joint papers, etc.
 - IL's are the frontline for Technology Transfer, Student Recruiting.

30 Years of Industrial Liaisons

- 3047 unique liaisons
- 2389 different research task assignments
- ~ 600 IL's are engaged in SRC research at any time.

• Recognition of truly exceptional service is provided through the Mahboob Khan Award.

The Mahboob Khan Award

Mahboob Khan of AMD set very high standards as an industry liaison. In his honor, the Award recognizes exceptional liaison performance.

Since it inception in 1997, 107 individuals have received the Mahboob Khan Award.

AMDA

- Adam Pawloski (2005)
- David F. Reed (2000)
- Effiong Ibok (1998)
- Gamal Refai-Ahmed (2010)
- Linda Milor (1997)
- Paul Ferno (2010)
- Zoran Krivokapic (2006)

• John Sauber (1997)

freescale

- Colin McAndrew (2007)
- Gary Morrison (2011)
- Hsi-An Kwong (2007, 2011)
- James Holt (2010)
- James (Skip) Egley (2004)
- Jayanta Bhadra (2011)
- Koneru Ramakrishna (2005)
- Magdy S. Abadir (2008)
- Martin Gall (2007)
- Matthew Miller (2009)
- Radu Secareanu (2007)
- Stefan Zollner (2008)
- Taras A. Kirichenko (2008)
- Willard Conley (2010)

GLOBALFOUNDRIES

- Christian Witt (2009)
- Luigi Capodieci (2010)
- Todd Ryan (2011)

- Robert Aitken (1998)
- Ted Kamins (1997)

- Anne E. Gattiker (2008)
- Charles J. Alpert (2007, 2001)
- Chung-Hsun Lin (2011)
- Dan O'Connor (2006)
- Denise Puisto (1997)
- James Libous (2006, 2002)
- James Ryan (1999)
- Jason Baumgartner (2011)
- Phil Nigh (2005)
- Richard Williams (2011)
- Robert Allen (2000)
- Robert Gauthier (2006)
- Robert Rosenberg (2011, 2008)
- Ruchir Puri (2008)
- Sani Nassif (2006, 2004)
- Steven German (2004)

- Ching Tsun Chou (2005)
- Dmitri Nikonov (2010)
- Henning Braunisch (2008)
- Hong Wang (2011)
- Jeff Bielefeld (2010)
- Jeffrey Parkhurst (2002)
- Kemal Aygun (2008)
- Mani Janakiram (2003, 1999)
- Martin Giles (1998, 1997)
- Michael Kishinevsky (2010, 2004)
- Mosur Mohan (2010)
- Prashant Sawkar (2000)
- Ram Kumar Krishnamurthy (2011, 2002)
- Sanu Mathew (2009)
- Shih-Lien Lu (2009)
- Susheel Jadhav (2005)

- T.M. Mak (2004, 1997)
- Timothy Kam (2004)
- Wilman Tsai(2009)

- Alexander Liddle (1998)
- Robert Kurshan (2001)
- Sungho Jin (1998)

Andres Takach (2010)

ᄊ MOTOROLA

- Dejan Jovanovic (2001)
- Doug Garrity (2002)
- James (Skip) Egley (2004)
- Laurie Beu (1998)
- Pawitter Mangat (2003)
- Terry Sparks (2002)
- Will Conley (2003)

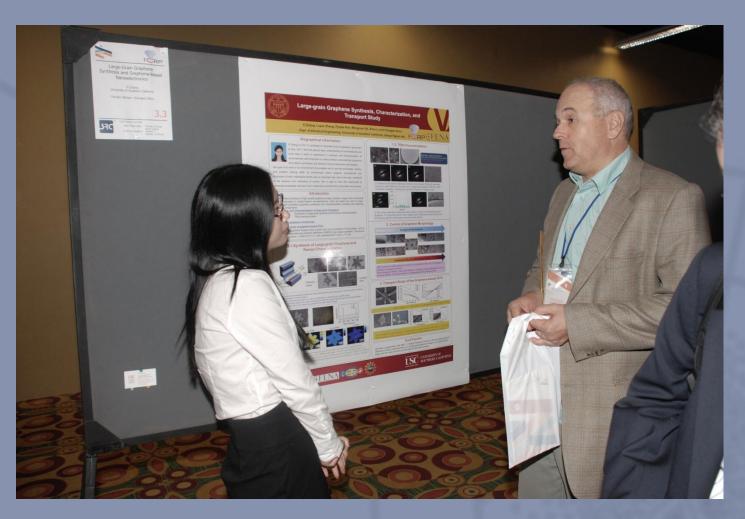
- Hosam Haggag (2003)
- Luu Nguyen (2003)

NOVELLUS

- George "Andy" Antonelli (2011)
- Jon Reid (2007)
- Larry Gochberg (2006, 2003)

Bradley Van Eck (1997)

Shipley Company


• Charles Szmanda (2002)

TEXAS INSTRUMENTS

SR

- Anand Krishnan (2010)
- Friedrich J. Taenzler (2008)
- Ganesh Srinivasan (2010)
- Jeff Zhao (2011)
- John Carulli (2010)
- Keith Green (2011, 2005)
- Ken Butler (2011, 2006)
- Marie Denison (2010)
- Mark Mason (2000)
- Mike Lamson (2005)
- Rick Wise (2010, 2007)
- Srikanth Krishnan (2010)
- Turker Kuyel (2003)
- Vijay Reddy (2011)

Industry Feedback on Research

Constructive Assessments for Increased Effectiveness

Return to Outline

SR

Research Reviews

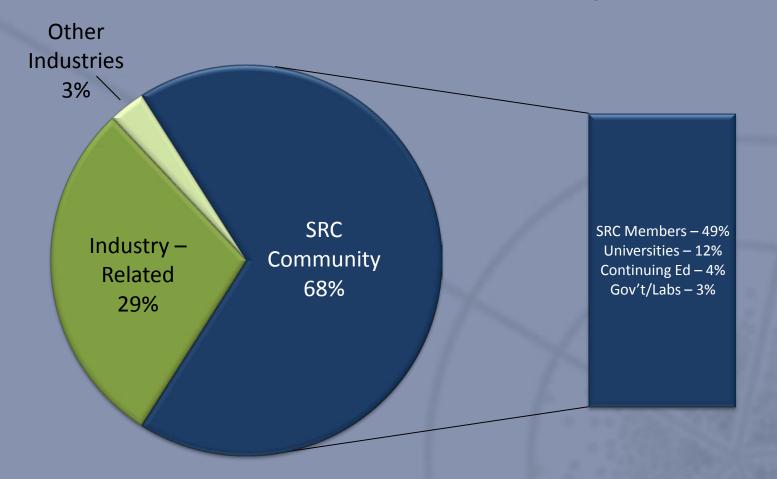
 SRC Members take the responsibility of research monitoring very seriously and review every SRC research program every year.

 ~ 850 reviews since inception to strengthen research and the industry-university partnership

Our University Partners

Acknowledging the Contributions of Faculty & Students in Support of the SRC Mission

Return to Outline


SR

Graduates

- Since 1982, over 9400 students have worked on SRC sponsored projects.
- At any given time, there are between **1200** and **1500** students involved in SRC research.
- The vast majority of our alumni obtained graduate degrees, mostly the Ph.D.

SRC Graduates Begin Careers in the Community

Information reflects over 4200 graduates with known first hire data

Spotlight on SRC Alumni

Larry Pileggi - Professor and Head of ECE @ CMU (AWE)

Tze-Chiang Chen -IBM VP, Science & Technology Research (2011 IEEE Weber Prize)

Bing Sheu -TSMC Director of Design Platform (BSIM)

More Former Students



S

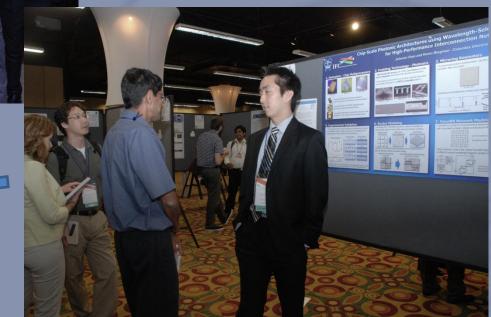
Veena Misra, Mary Ann Maher Prith Bannerjee, Professor ECE, NCSU CEO, SoftMEMS CTO, ABB

More Former Students

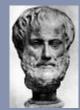
And so many more!

Bernhard Boser, Professor of ECE, UC Berkeley

Kent Fuchs, Provost, Cornell

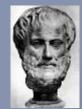


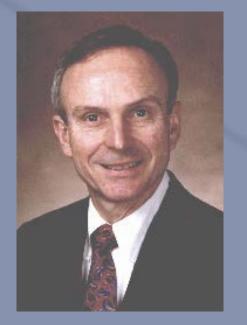
Collaboration is the Key!

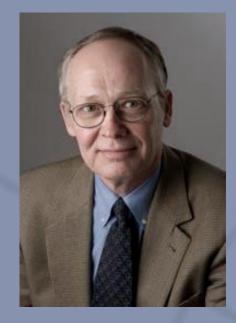


TECHCON: A celebration of our students

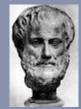
"Let me show you my results!"




This is award recognizes career contributions of faculty who have distinguished careers in semiconductor research, in education, and in life-long mentoring of their students.



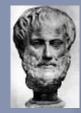
SRC Aristotle Awards


Bob Dutton Stanford, 2011

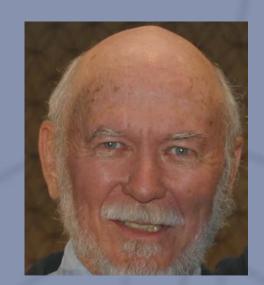
Mark Lundstrom Purdue, 2010

Chenming Hu Berkeley, 2009

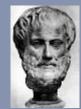
Aristotle Award Winners



Larry Pileggi CMU, 2008 Wojceich Maly CMU, 2007 Mark Law U. FLA, 2006

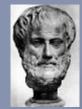


S



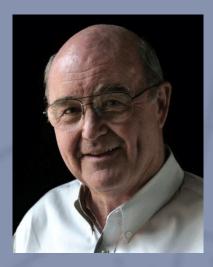
David Allstot U. Washington, 2005 James MeindlJimmie WortmanGeorgia Tech, 2004NCSU, 2003

Aristotle Award Winners

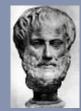


Alberto Sangiovanni-Vincentelli UC Berkeley,2002 Rob Rutenbar CMU, 2001

Gerald Neudeck Purdue, 2001



Aristotle Award Winners



Rafael Reif MIT, 2000

Roxann Englestad U. Wisconsin, 1999 Grant Willson U. TX, 1999

Franco Cerrina U Wisconsin, 1998 Kensall WiseStephen DirectorU. Michigan, 1997CMU, 1996

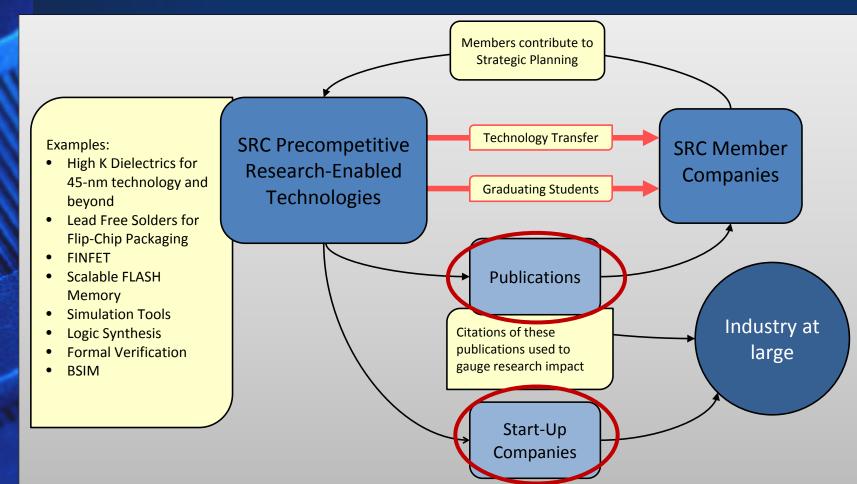
Major Accomplishments

Built the world's <u>largest</u> and <u>most successful</u> university research force to support the 10,000-fold advances of the semiconductor industry.

- In 1982, less than 100 students and faculty conducted silicon research.
- In 2011, that number is
 500 faculty and 1,500 students!

The SRC community publishes 20% of the world's research on silicon; seven times more than AMD, GLOBALFOUNDRIES, IBM, Intel, Freescale, and TI *combined*.

Impacting our Members


SR

• Examples of Contributions to Member Company Return to Outline Workforce and Technology Infrastructure

SRC Research: Designed for Impact

- SRC research anticipates future technology needs of members and provides results via timely and relevant technology transfer
- In addition, SRC research produces a significant number of influential papers and start up companies, which benefits the industry as a whole

Former SRC students and liaisons are developing new industry technologies

A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging
K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau* C.-H. Choi, G Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He[#], J. Hicks[#], R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz[#], B. McIntyre, P. Moon, J. Neirynck, S. Pae[#], C. Parker, D. Parsons, C. Prasad[#], L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren[%], J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, K. Zawadzki Logic Technology Development, *Components Research, [#]QRE, [%]TCAD, Intel Corp., Hillsboro, OR, U.S.A.

7 SRC Alumni5 SRC Liaisons22% SRC participants

December 2007

Former SRC students, TAB members & Liaisons are developing new industry technologies

EUV Lithography at the 22-nm technology node

Obert Wood^{a*}, Chiew-Seng Koay^b, Karen Petrillo^b, Hiroyuki Mizuno^c, Sudhar Raghunathan^b, John Arnold^b, Dave Horak^b, Martin Burkhardt^d, Gregory Mcintyre^b, Yunfei Deng^e Bruno La Fontaine^f, Uzo Okoroanyanwu^a Tom Wallow^e, Guillaume Landie^f, Theodorus Standaert^b, Sean Burns^d, Christopher Waskiewicz^b, Hirohisa Kawasaki^e, James H.-C. Chen^b, Matthew Colburn^b, Bala Haran^b, Susan S.-C. Fan^b, Yunpeng Yin^b, Christian Holfeld^g, Jens Techel^g, Jan-Hendrik Peters^g, Sander Bouten^h, Brian Lee^h, Bill Pierson^h, Bart Kessels^h, Robert Routh^h, and Kevin Cummings^h

^aGLOBALFOUNDRIES, 257 Fuller Road, Albany, NY 12203 USA ^bIBM Corporation, 257 Fuller Road, Albany, NY 12203 USA ^cToshiba America Electronic Components, 257 Fuller Road, Albany, NY 12203 USA ^dIBM Corporation, 2070 Route 52, Hopewell Junction, NY 12533

^eGLOBALFOUNDRIES, 1050 E. Arques, Sunnyvale, CA 94088 ^fSTMicroelectronics, 257 Fuller Road, Albany, NY 12203 USA ^gAMTC, Rahnitzer Allee 9, D-01109 Dresden, Germany ^hASML. 25 Corporate Circle. Albanv. NY 12203 USA

7 SRC Alumni
6 SRC Liaisons
3 SRC TAB Participants
37.5% SRC participants

Former SRC students, TAB members & Liaisons are developing new industry technologies

A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate Transistors, Enhanced Channel Strain and 0.171µm² SRAM Cell Size in a 291Mb Array

S. Natarajan, M. Armstrong, M. Bost, R. Brain, M. Brazier, C-H Chang, V. Chikarmane, M. Childs, H. Deshpande,
K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han J. He* R. Heussner, R. James, I. Jin, C. Kenyon, S. Klopcic, S-H. Lee,
M. Liu S. Lodha, B. McFadden, A. Murthy, L. Neiberg, J. Neirynck, P. Packan, S. Pae*, C. Parker, C. Pelto, L. Pipes,
J. Sebastian, J. Seiple, B. Sell, S. Sivakumar, B. Song, K. Tone, T. Troeger, C. Weber**, M. Yang, A. Yeoh, K. Zhang
Logic Technology Development, * Quality and Reliability Engineering, ** TCAD, Intel Corporation.
Phone: (503) 613-8029; Email: sanjay.natarajan@intel.com

6 SRC Alumni 6 Liaisons 1 TAB Member 26.7% SRC Participants

RF CMOS Technology Scaling in High-k/Metal Gate Era for RF SoC (System-on-Chip) Applications

C.-H. Jan, M. Agostinelli, H. Deshpande, M. A. El-Tanani, W. Hafez, U. Jalan, L. Janbay, M. Kang, H. Lakdawala[†], J. Lin, Y-L Lu, S. Mudanai, J. Park, A. Rahman, J. Rizk, W.-K. Shin, K. Soumyanath[†], H. Tashiro, C. Tsai, P. VanDerVoorn, J.-Y. Yeh, P. Bai

Logic Technology Development (LTD), Intel Corporation, Hillsboro, Oregon, USA *Integrated Platform Research/Radio Integration Research (RIR), Intel Labs, Intel Corporation, Hillsboro, Oregon, USA Contact: e-mail chia-hong.jan@intel.com

December 2010

8 SRC Graduated Students 7 Liaisons 4 TAB Advisors 54.5% SRC Participants

Survey Paper

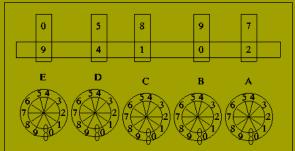
Automatic control in microelectronics manufacturing: Practices, challenges, and possibilities[☆]

Thomas F. Edgar^{a,*}, Stephanie W. Butler^b, W. Jarrett Campbell^{c,1}, Carlos Pfeiffer^d, Christopher Bode^c, Sung Bo Hwang^e, K. S. Balakrishnan^d, J. Hahn^a

> ^aDepartment of Chemical Engineering, The University of Texas, Austin, TX 78712, USA ^bTexas Instruments, Dallas, TX, USA ^cAdvanced Micro Devices, Austin, TX, USA ^dMotorola, Austin, TX, USA ^eHyundai, Ichon, South Korea

> Received 28 May 1998; revised 9 April 1999; received in final form 28 August 1999

Liaison/TAB Member


This publication cites **16** SRC sponsored articles as references

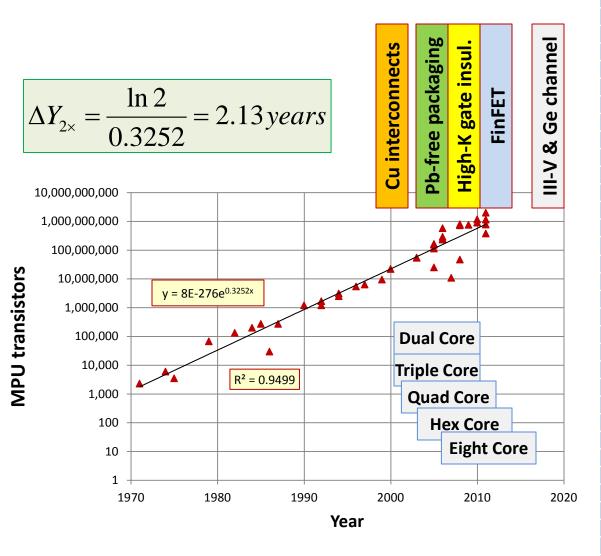
Compelling Reasons for SRC Membership

- **Compelling reason:** Innovative SRC research of extraordinary benefit to a member company.
 - A **compelling reason** should be so evident that it could be described to the CEO on an elevator ride.
 - We have received from our members literally thousands of compelling reasons over the last fifteen years.
 - SRC research has accelerated company technologies and provided millions of dollars in cost savings.

Blaise Pascal, circa 1600 An innovator slightly ahead of his time!

Front Panel of Pascal's Calculator

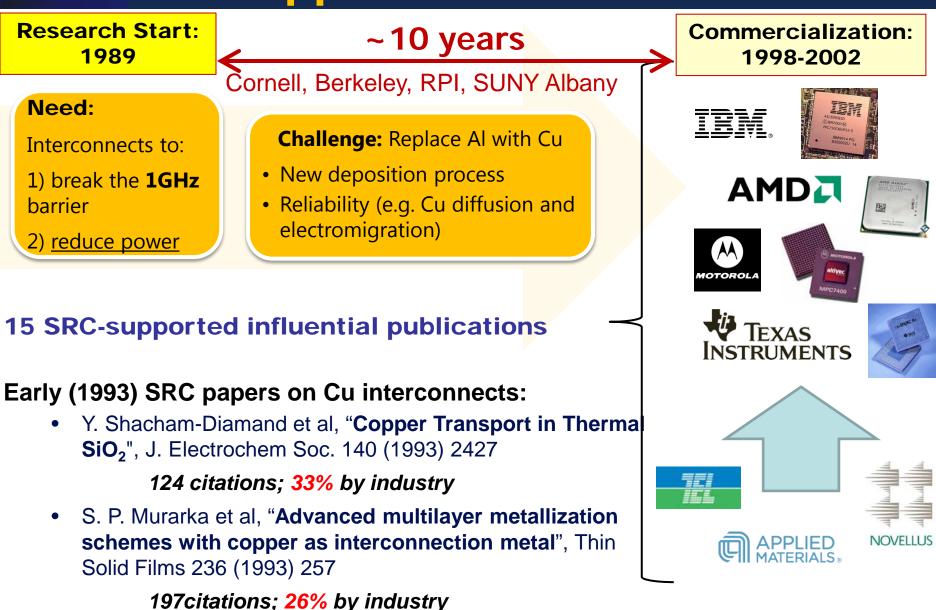
Celebrating Accomplishments

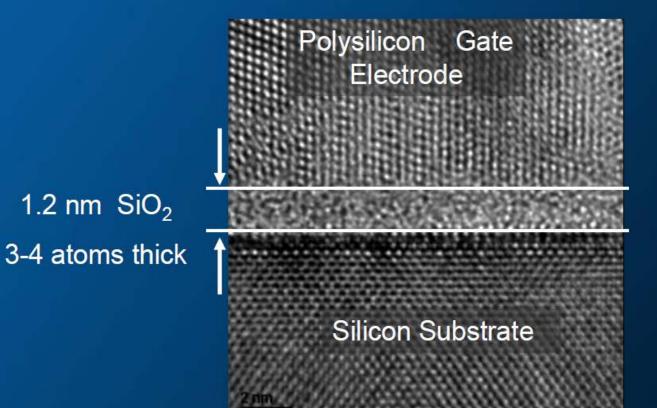

A few examples of research contributing to our members' technologies

- The Copper Revolution
- The high-K Breakthrough
- 'Green' Flip-Chip Packages
- Birth of the CAD Industry
- Compact Modeling
- Flash Memory
- Simulation tools (Process, Device, Circuit, System)
- Logic Synthesis
- Formal Verification
- Many more

Return to Outline

SRO


Moore's Law: 1971-2011 (Microprocessors)


Company	Model	Year	
Intel	4004	1971	
Intel	8080	1974	
MOS Technology	6502	1975	
Motorola 68000	68000	1979	
Intel	286	1982	
Motorola	68020	1984	
Intel	386DX	1985	
ARM	ARM2	1986	
Motorola	68030	1987	
Motorola	68040	1990	
DEC	Alpha 21064 EV4	1992	
Intel	486DX	1992	
Motorola	68060	1994	
Intel	Pentium	1994	
Intel	Pentium Pro	1996	
IBM - Motorola	PowerPC 750	1997	
Intel	Pentium III	1999	
AMD	Athlon	2000	
AMD	Athlon XP 2500+	2003	
Intel	Pentium 4 Ext. Edition	2003	
Centaur - VIA	VIA C7	2005	
AMD	Athlon FX-57	2005	
AMD	Athlon 64 3800+ X2	2005	
IBM	Xbox360 "Xenon"	2005	
Sony-Toshiba-IBM	PS3 Cell BE	2006	
AMD	Athlon FX-60	2006	
Intel	Intel Core 2 Extreme X6800		
Intel	Core 2 Extreme QX6700	2006	
P.A. Semi	PA6T-1682M	2007	
Intel	Core 2 Extreme QX9770	2008	
Intel	Core i7 920	2008	
Intel	Intel Atom N270		
AMD	E-350	2011	
AMD	Phenom II X4 940	2009	
AMD	Phenom II X6 1100T	2010	
Intel	Core i7 980X	2010	
Intel	Core i7 2600K	2011	
Intel	Core i7 875K	2011	
AMD	8150	2011	

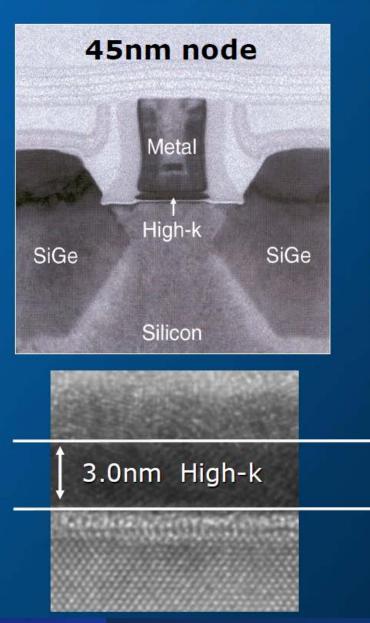
The Copper Revolution

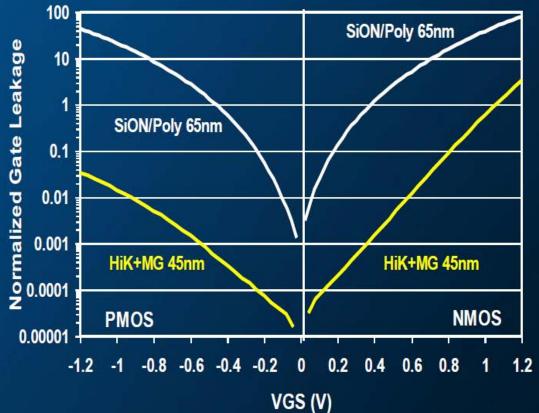
SR

"We're running out of atoms"

The Gate Dielectric Dilemma: Transistors are leaky & dissipate power, even when off!

Mike Mayberry, Intel Corp.


The high-K Breakthrough



• 18 SRC-supported influential publications (>100 citations)

Paper Title	Authors	Total Citations	Industry Percentage
High-k gate dielectrics: Current status and materials properties considerations, JAP 89 (2001) 5243	Wilk / Agere, Wallace /U. N Texas, Anthony/ U. S Florida	3288	27%
High quality ultra thin CVD HfO2 gate stack with poly- Si gate electrode, IEDM 2000 , 31-34	Dim Lee Kwong et al. /UT Austin	126	34%
Alternative dielectrics to silicon dioxide for memory and logic devices, Nature 406 (2000) 1032	Angus Kingon et al. / NCSU	663	24%

The Solution: New Materials and New Fabrication

45 nm HK+MG provides >25x gate leakage reduction

Mike Mayberry, Intel Corp 14

'Green' Flip-Chip Packages

- Innovation of a "Green" flip chip for use in consumer electronics applications.
- Successful transfer of Pb-free packaging to industry.
- 9 SRC-supported influential publications (>100 citations)
- World-record # of citations for paper on packaging:
 - K. Zeng and K. N. Tu, "Six cases of reliability study of Pb-free solder joints in electronic packaging technology", MATERIALS SCIENCE & ENGINEERING 38 (2002) 55-105
- 578 citations; ~20% by industry

SR

The Birth of CAD Industry

Berkeley, CMU

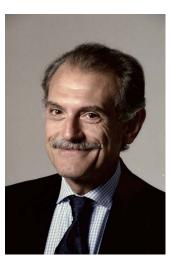
THE NEED for Design Automation Compact Modeling Tools; Formal Verification Tools; Logic Synthesis Tools; Simulation Tools

cādence™

SYNOPSYS[®]

- Original developments in Design Automation
- Successful transfer of CAD projects to industry.
- 15 SRC influential publications (>100 citations)

1986	"Graph-based algorithms for Boolean function manipulation", <i>IEEE Trans on Comput</i> 35 (1986) 677	Bryant (CMU)	1754	321	18%
1987	"MIS: A Multiple-Level Logic Optimization System", IEEE Trans. CAD 6 (1987) 1062	R. K. Brayton, (UC/Berkeley)	261	89	34%
1987	BSIM - Berkeley Short-Channel IGFET Model for MOS-Transistors", IEEE J. S-State Cir 22 (1987) 558		200	55	28%
1987	"Randomized Rounding: A Technique for Provably Good Algorithms and Algorithmic Proofs", Combinatorica 7 (1987) 365	Prabhakar Raghavan, C. D. Thompson	307	61	20%
1987	"Multiple-valued minimization for PLA Optimization", IEEE Trans. CAD 6 (1987) 727	A. Sangiovanni-Vincentelli, (UC/Berkeley)	106	15	14%
1989	"OASYS: A Framework for Analog Circuit Synthesis"	L. R. Carley, (CMU)	126	15	12%
1990	"Asymptotic waveform evaluation for timing analysis", IEEE Trans CAD 9 (1990) 352	R. A. Rohrer (CMU)	762	206	27%



Design Automation

Alberto Sangiovanni-Vincentelli, Co-Founder

SRC faculty researcher since 1982 working Logic Synthesis, High-level modeling, Simulation etc.

SRC-supported Research Helped to Make Possible Scalable Flash Memory

Hot-electron injection in thin films of insulators

To make a reliable and small FLASH memory with **very high capacity**, it was necessary to understand the physics of hot-electron injection in thin films of insulators.

The physics of hot-electron injection in thin insulator films was understood in 1989-1994 from basic research at Berkeley supported by SRC.

Paper Title				Authors	Total Citations	Industry Percentage	(CC)
"Hole injection SiO2 breakdown model for very-low voltage lifetime extrapolation", IEEE Trans Electron Dev 41 (1994) 761			Klaus Schuegraf and Chenming Hu	278	41%		
	1	Contraction of the second			1		us Schuegraf, CTO blied Materials
				earch has enabled et memory sticks, i	•		

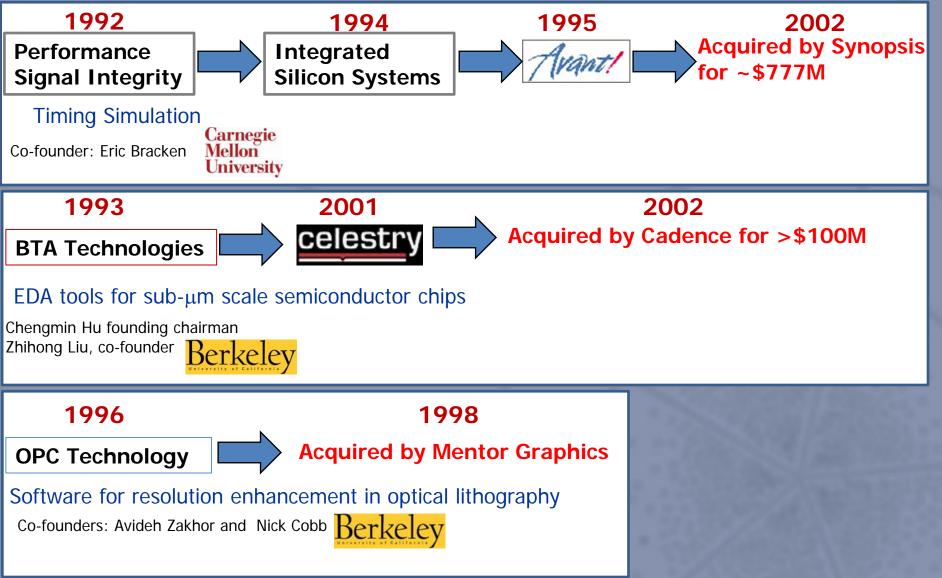
An SRC Tradition: Support for Compact Model Research

Need: Accurate and parsimonious models for chip circuit simulators

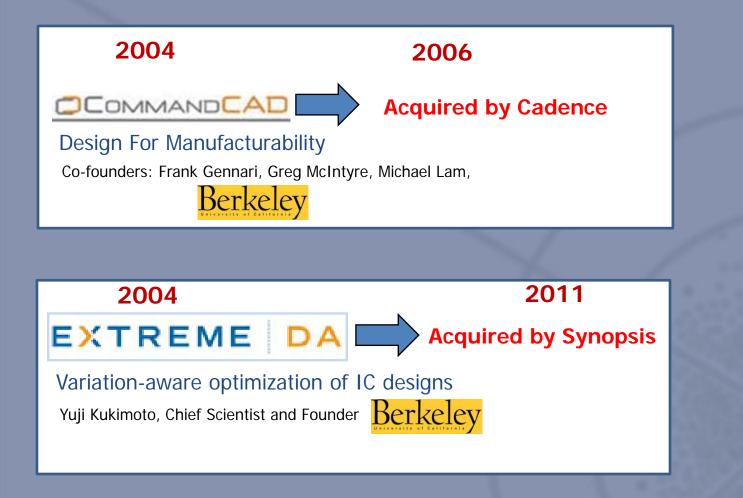
Challenge: Must be adaptable for a changing technology landscape

Importance: Compact Models are heavily used in chip design

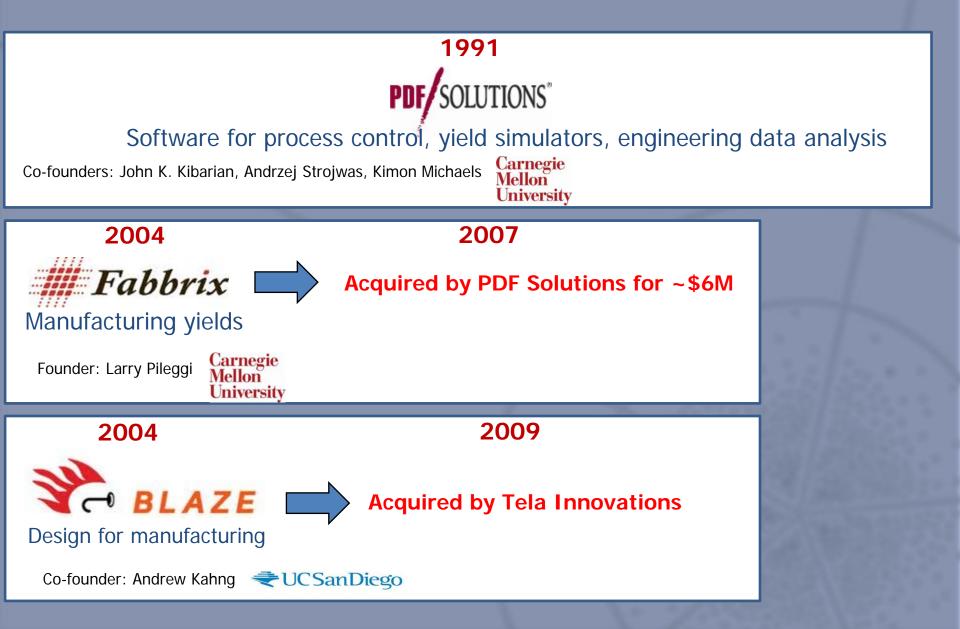
SRC research in Compact Modeling began in mid-1980's and continues in 2012.

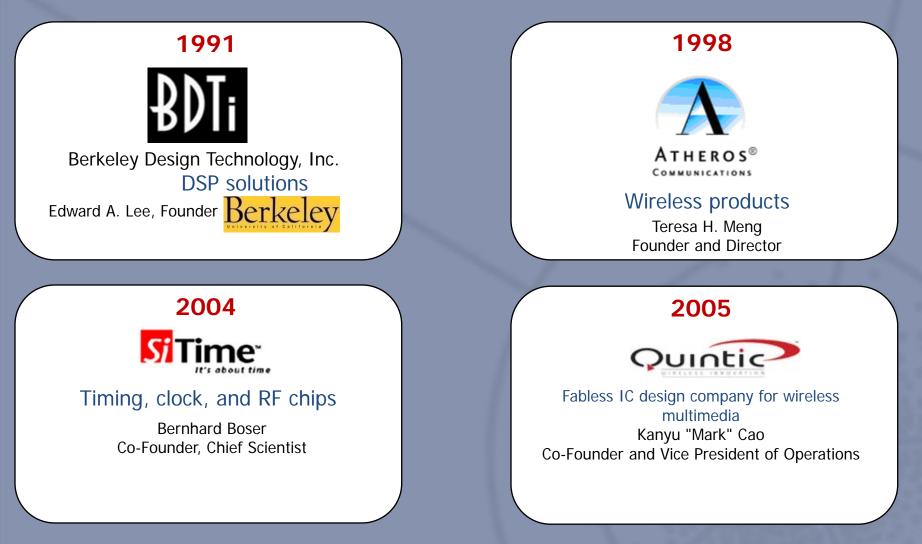


SRC IP and Start Ups with SRC Roots

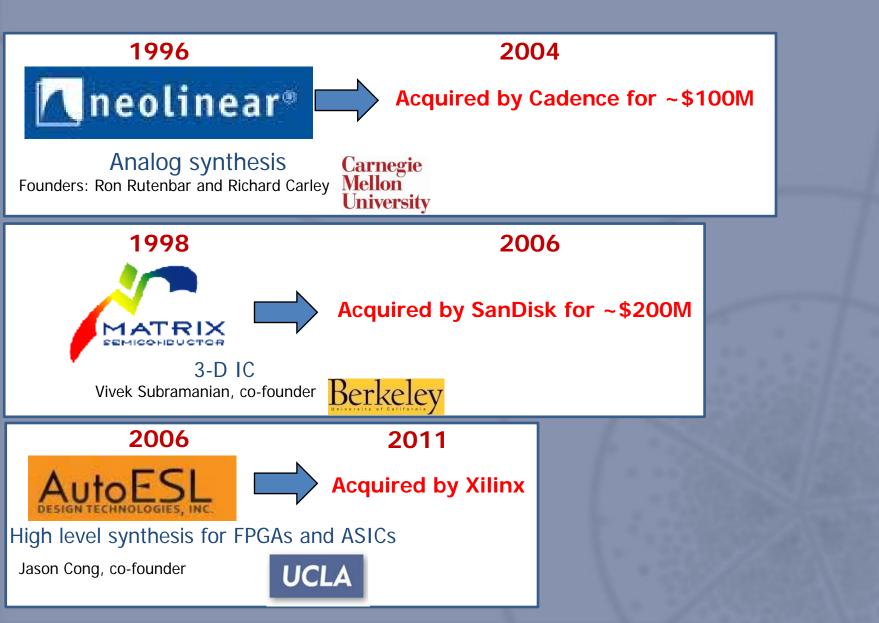


Return to Outline

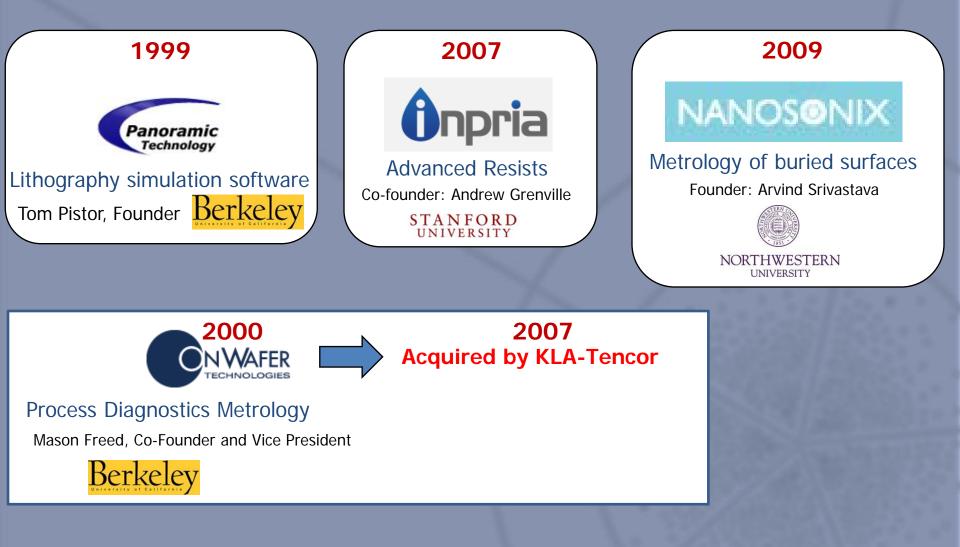

Design Automation Companies with Roots in SRC Research


Design Automation Companies with Roots in SRC Research

Design for Manufacturing



Analog/Mixed Signal Companies with Roots in SRC Research



Companies with Roots in SRC Research

SSC

Process-related Companies with Roots in SRC Research

Process-related Companies with Roots in SRC Research

2001 2001 Molecular Imprints Imprint lithography

Co-Founder: Grant Willson

2003 MENC Environmental Metrology Corporation

Electrochemical Residue Sensors

Co-Founders: Farhang Shadman, Bert Vermeire

2007 ARBOR PHOTONICS

EUV Source

Co-founder: Almantas Galvanauskas

Companies with Roots in SRC Research

1990

SR

Sunrise Test Systems

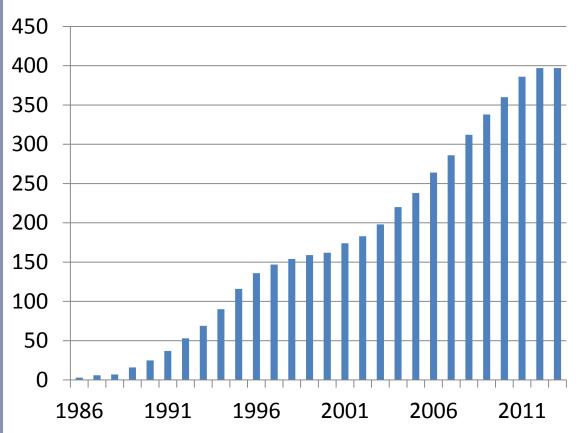
Test automation solutions

Thomas Niermann

I L L I N O I S

System Level Design

2008 VOC technologies incorporated


Continuous Speech to Text Recognition

Rob A. Rutenbar

Carnegie Mellon University

Intellectual Property Summary

SRC Cumulative Patent History

 289 active patents

397 overall

SRC Average: 14.5

Technology Futures

• Prognoses from the Current Research Portfolio

Return to Outline

SR

Where Are We Going?

- Some technology projections from current research
 - Sub-16 nm patterning
 - III-V channel FET
 - Optical Interconnects
 - 3D-IC
 - Integrated Sensors
 - Terahertz Electronics

III-V channel FET

Inte

freescale

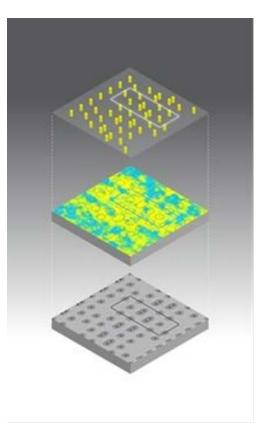
INSTRUMENTS

- Original developments in III-V channel FET
- Successful transfer of III-V projects to industry, e.g. through liaisons

Influential publications

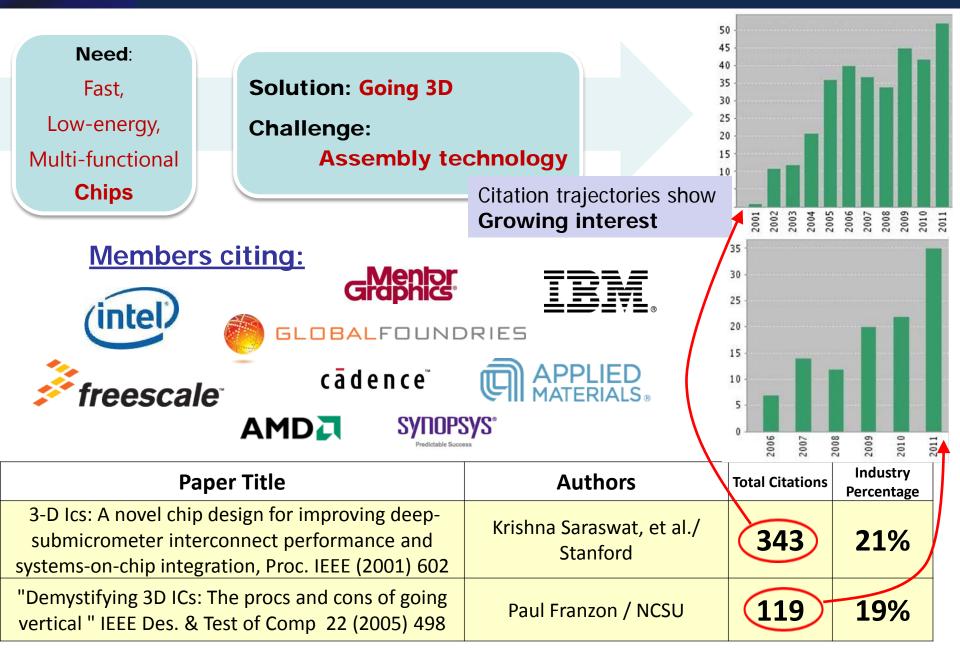
Paper Title	Authors	Total Citations	Industry Percentage
"HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition", APL 86 (2005) 152904	Martin Frank / IBM Eric Garfunkel /Rutgers, et al.	142	21%
"High-performance inversion-type enhancement- mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm", IEEE ELD 29 (2008) 294	Peide Ye / Purdue U et al.	126	18%
GaAs interfacial self-cleaning by atomic layer deposition, APL 92 (2008) 071901	Robert Wallace et al. / UT Dallas	108	24%

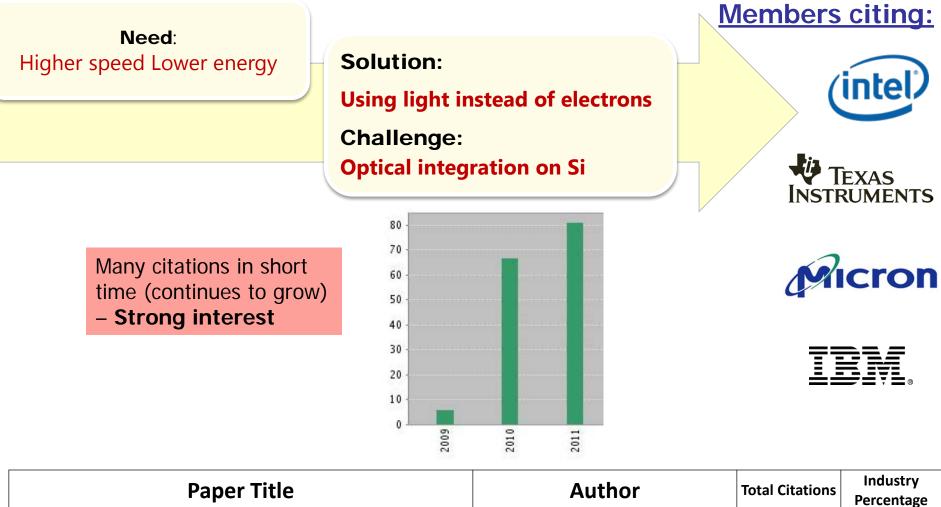
Sub-16 nm patterning


Science 321 (2008) 939

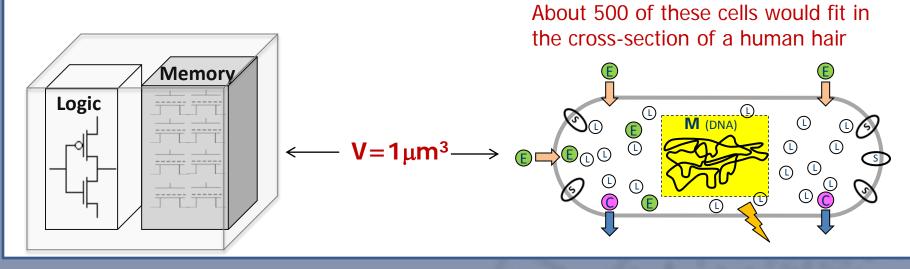
Sub-16 nm patterning

SRC and Stanford Enable Chip Pattern Etching for 14nm


11:00 AM - May 29, 2012 by <u>Douglas Perry</u> - source: <u>SRC</u> Tom's Hardware.com <u>http://www.tomshardware.com/news/22nm-14nm-chip-semiconductor-manufacturing,15756.html</u>


Stanford scientists were able to successfully demonstrate a new directed self-assembly (DSA) process **not just for regular** test patterns, but for **irregular** patterns that are required for the manufacture of smaller semiconductors. This technique will enable pattern etching for nextgeneration chips down to 14 nm.

3-D Integrated Circuits



Paper Inte Author			Percentage	
"Device Requirements for Optical Interconnects to Silicon Chips", Proc. IEEE 97 (2009) 1166	David Miller /Stanford	195	21%	

Nature Has Been Processing Information for a Billion Years

Si-µCell

Bio-µCell – A Living Cell

Our studies show that the Si- μ Cell cannot match the Bio- μ Cell in the density of memory and logic elements, nor operational speed, nor operational energy:

Memory:	1000x
Logic:	>10x
Power:	1000,000x
Algorithmic	efficiency: 1000x

Many Challenges and Opportunities Stand Before Us

Continue to extend Moore's Law by driving-down integrated circuit fabrication costs

• Even as feature sizes approach atomic dimensions

Expand the space of integrated circuit applications

Dramatically reduce energy consumption of integrated circuits

• May need to invent new devices & interconnect technologies

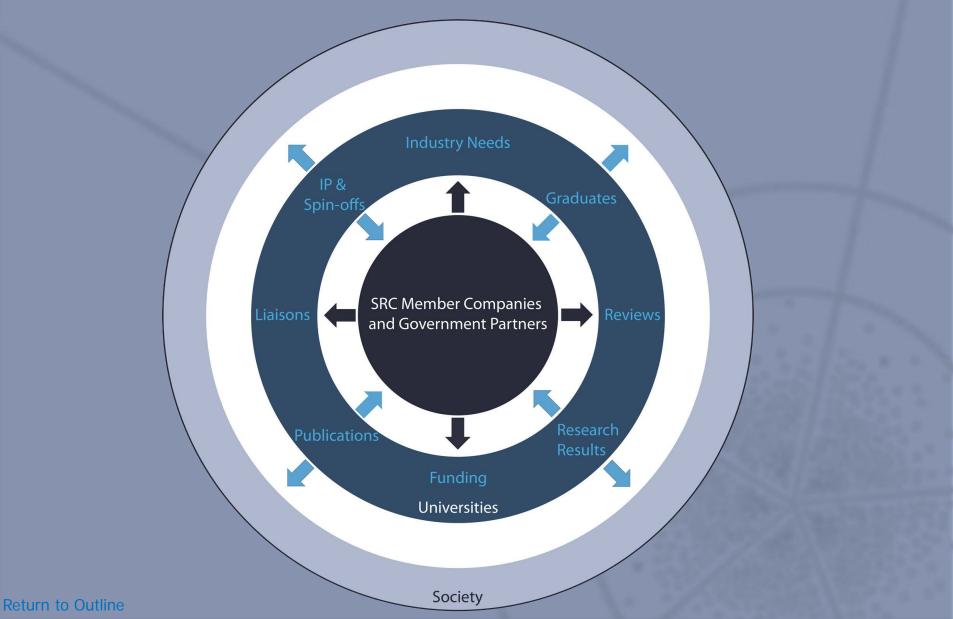
Expand the sensory domain of integrated circuits

• And learn to utilize the vast amount of data that results

Develop new ways of processing information

• Is it possible to develop machines that reason and discover?

Return to Outline


"Never doubt that a small group of thoughtful, committed people can change the world. Indeed, it is the only thing that ever has."

Margaret Mead

Let's Keep Rolling!

SR

PIONEERS IN COLLABORATIVE RESEARCH®

Back-Up Charts

Return to Outline

Citations are a Measure of Notable Academic Achievement and Technological Impact

SRC defines papers with at least 100 citations as "influential"

Industry citations are a key!

Citations of Publications on Nobel Prize Winning Research (in the area of semiconductors)

	Not	oel Prize	# of Citations		
Article	Awarded	For	25 yrs from publication	2008	
Bardeen J, Brattain WH "The Transistor, a Semi-conductor Triode", Phys. Rev. 74 (2): 230-231 1948	1956	Discovery of semiconductor transistor	71	235	
Esaki L, "New phenomenon in narrow Germanium p-n junctions", Phys. Rev. 109 (1958) 603	1973	Discovery of tunnel diode	247	547	
Kroemer H, "Heterostructure Bipolar-transistors and Integrated- circuits", PROC. of the IEEE 70 (1982) 13	2000	Invention of heterojunctions	577	609	

Note that several papers underlying these Nobel Prize winning technologies received several hundred citations.

Percent of Influential Publications at Top Universities

- Below is an analysis of publications from a sampling of Top-100 ranked universities across the world (according to ARWU).
- Includes all publications between 1899 and 2010.

	Total # of	# of Influential	
University	Publications	Publications	Percent
UC Berkeley	226,739	11,623	5.13
U Oxford	260,171	9,958	3.83
Leiden U	66,732	2,172	3.25
U Copenhagen	71,367	1,974	2.77
Purdue U	113,689	2,774	2.44
U Oslo	55,016	1,227	2.23
U Sydney	95,534	1,848	1.93
U Bonn	61,651	1,158	1.88
Kyoto U	6,722	98	1.46
Moscow State U	122,561	503	0.41
	922,997	33,335	3.61

Only ~3.6% of papers receive more than 100 citations.

Academic Ranking of World Universities (ARWU) ranking based on number of alumni and staff awarded Nobel Prize or Fields Medal, number of highly cited researchers according to Thomson Scientific, number of articles published in *Nature* or *Science*, number of articles indexed in Science Citation Index-Expanded and Social Sciences Citation Index, and per capita performance with respect to the size of an institution.

IEEE Journals: Citation Statistics

SR

	Totals								
	(through 2010)			Average per year					
IEEE Journal	Pubs	Citations	100+	Pubs	Citations	100+	% of 100+	Avg. cit/pub	
IEEE Transactions on Electron Devices	16,807	245,899	304	357.60	5,231.89	6.47	1.8%	14.63	
Proceedings of the IEEE	19,949	279,959	548	231.97	3,255.34	6.37	2.7%	14.03	
IEEE Electron Device Letters	6,433	103,644	111	207.52	3,343.35	3.58	1.7%	16.11	
IEEE Journal of Solid State Circuits	8,813	158,184	218	195.84	3,515.20	4.84	2.5%	17.95	
IEEE Circuits and Devices Magazine	615	1,522	2	61.50	152.20	0.20	0.3%	2.47	
IEEE Trans. on CAD of Integrated Circuits and Systems	3,952	51,897	52	146.37	' 1,922.11	1.93	1.3%	13.13	
IEEE Transactions on Computers	7,324	124,501	184	166.45	2,829.57	4.18	2.5%	17.00	
IEEE Transactions on Nanotechnology	820	9,076	8	91.11	1,008.44	0.89	1.0%	11.07	
IEEE Transactions on Reliability	4,165	31,444	20	88.62	669.02	0.43	0.5%	7.55	
Averages	7,653	111,792	161	171.89	2,436.35	3.21	1.60%	12.66	

In these IEEE publications, **1.60%** of articles receive 100+ citations, and the average number of citations is **12.66**.

Technology Transfer Indicators

JRC

Est.			# of citations		Commercial Ap	plicatio	n														
Research Start	Research/Influential Article	Researchers	Total	By Industry	Technology	Year	Company Products														
1984	"BSIM - Berkeley Short-Channel IGFET Model for MOS- Transistors", IEEE J. S-State Cir 22 (1987) 558	Sheu et al UC/Berkeley	200	55 <mark>(28%)</mark>	Modeling Tools; Formal Verification Tools; Logic	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
1983	"Graph-based algorithms for Boolean function manipulation", IEEE Trans on Comput 35 (1986) 677	Bryant CMU	1754	321 <mark>(18%)</mark>			Synopsis;														
1987	"Asymptotic wave-form evaluation for timing analysis", IEEE Trans Computer-Aided Design 9 (1990) 352	Pillage and Rohrer UT/Austin & CMU	762	206 <mark>(27%)</mark>		1992	Cadence														
1990	"Threshold voltage model for deep-submicrometer MOSFET's", IEEE Trans Electron Dev 40 (1993) 86	Liu, Hu et al. UC/Berkeley	209	73 <mark>(35%)</mark>																	
1994	"Multilevel interconnections for ULSI and GSI era", Mat Sci & Engn R-Reports 19 (1997) 87	Murarka, <mark>RPI</mark>	258	54 <mark>(21%)</mark>	Cu, low-K, &multilevel interconnects	2000	IBM; TI; Freescale; Connexant; LSI; Flip-Chip Tech														
1998	"The future of wires", Proc IEEE 89 (2001) 490	Ho, Mai et al. <mark>Stanford U</mark>	429	89 <mark>(21%)</mark>																	
2000	"Recent advances on electromigration in very-large- scale-integration of interconnects", <i>JAP</i> 94 (2003) 5451	Tu, <mark>UCLA</mark>	369	99 (<mark>27%)</mark>																	
1986	"Point-Defects and Dopant Diffusion in Silicon", <i>Rev</i> <i>Mod Phys</i> 61 (1989) 289	Fahey, Plummer <mark>Stanford U</mark>	847	261 <mark>(31%)</mark>	Sub-100 nm MPU and Flash		Intel; AMD; GF; Freescale;														
1994	"Making silicon nitride film a viable gate dielectric", IEEE Trans on Electron Dev 45 (1998) 680	Ma, <mark>Yale U</mark>	220	56 <mark>(25%)</mark>		2001	TI; NORTEL; IBM; Digital Equlp. Corp														
2000	"Tin-lead (SnPb) solder reaction in flip chip technology", <i>Mat Sci &Engn R-Reports</i> 34 (2001) 1	Tu, Zeng, UCLA	293	45 (15%)	Flip chip 'Green' (lead-		IBM; Connexant; TI;														
2000	"Six cases of reliability study of Pb-free solder joints in electronic packaging technology", <i>Mat Sci & Engn R-</i> <i>Reports</i> 38 (2002) 55	Zeng, Tu <mark>UCLA</mark>	578	99 (17%)	free) IC products	2005	Flip Chip Tech; Intel; Freescale														

Current & Projected Technology Transfers

JSC

Res.			# of c		Comm	ercial appli	cation		
Start	Research/Influential Article	Researchers	Total	By Industry	Technology	Year	Company		
1999	"High-k gate dielectrics: Current status and materials properties considerations", <i>JAP</i> 89 (2001) 5243	Wilk GD (Agere) Wallace R, Anthony J U North Texas & South Florida	3077	831 (27%)	45 nm MPU	2008	Intel; TI		
1998	"Alternative dielectrics to silicon dioxide for memory and logic devices", <i>Nature</i> 406 (2000) 1032	Kingon AI et al. NC State Univ	631	149 <mark>(24%)</mark>					
1994	"Elementary scattering theory of the Si MOSFET", IEEE Electron Dev Lett 18 (1997) 361	Lundstrom Purdue U	283	63 (22%)	Device Modeling	2008+	Intel; IBM; Freescale;		
1999	"Essential physics of carrier transport in nanoscale MOSFETs", IEEE Trans on Electron Dev 49 (2002) 133	Lundstrom , Ren Purdue U	228	59 <mark>(26%)</mark>	Tools	2008+	LSI; TI; AMD		
1998	"Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits", <i>Proc</i> <i>IEEE</i> 91 (2003) 305	Roy K et al. Purdue U	345	85 (25%)	Low-power	2010+	Intel; AMD; IBM;		
1993	"The impact of intrinsic device fluctuations on CMOS SRAM cell stability", IEEE J. S-State Cir 36 (2001) 658	Bhavnagarwala , Tang et al. <mark>Georgia Tech</mark>	217	94 (43%)	IC products	IC products	IC products	2010+	HP
1996	"Step and flash imprint lithography: A new approach to high-resolution patterning", <i>Emerging Lithographic Tech III</i> <i>Pts 1 and 2</i> 3676 (1999) 379	Colburn, Willson et al. U Texas/Austin	350	148 (42%)	22 nm	2012+	Anticipated: TI; IBM; Intel; GF; LSI		
1996	"Step and flash imprint lithography: Template surface treatment and defect analysis", JVST B 18 (2000) 3572	Bailey, Willson et al. U Texas/Austin	238	88 (37%)	patterning				
2005	"Directed assembly of block copolymer blends into nonregular device-oriented structures", <i>Sci</i> 308 (2005) 1442	de Pablo, Nealey et al. U Wisconsin	286	48 (17%)	Sub-22 nm patterning	2014 Projected	Anticipated: IBM; Intel; AMAT; GF; Micron		
1998	"3-D ICs: A novel chip design for improving deep- submicrometer interconnect performance and systems-on- chip integration", <i>Proc of IEEE</i> 89 (2001) 602	Banerjee, Souri, Kapur <mark>Stanford U</mark>	279	63 (23%)	3-D ICs	2015 Projected	Anticipated: Intel; TI; Freescale; IBM		