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Semiconductors, the tiny and highly advanced chips that power modern electronics, have helped give rise to the 

greatest period of technological advancement in the history of humankind. 

Chip-enabled technology now allows us to analyze DNA sequences to treat disease, model nerve synapses in 

the brain to help people with mental disorders like Alzheimer’s, design and build safer and more reliable cars 

and passenger jets, improve the energy effi  ciency of buildings, and perform countless other tasks that improve 

people’s lives.

During the COVID-19 pandemic, the world has come to rely more heavily on semiconductor-enabled technology to 

work, study, communicate, treat illness, and do innumerable other tasks remotely. And the future holds boundless 

potential for semiconductor technology, with emerging applications such as artifi cial intelligence, quantum 

computing, and advanced wireless technologies like 5G and 6G promising incalculable benefi ts to society.

Fulfi lling that promise, however, will require taking action to address a range of seismic shifts shaping the 

future of chip technology. These seismic shifts—identifi ed in The Decadal Plan for Semiconductors by a broad 

cross-section of leaders in academia, government, and industry—involve smart sensing, memory and storage, 

communication, security, and energy effi  ciency. The federal government, in partnership with private industry, 

must invest ambitiously in semiconductor research in these areas to sustain the future of chip innovation. 

For decades, federal government and private sector investments in semiconductor research and development 

(R&D) have propelled the rapid pace of innovation in the U.S. semiconductor industry, making it the global 

leader and spurring tremendous growth throughout the U.S. economy. The U.S. semiconductor industry invests 

about one-fi fth of its revenues each year in R&D, one of the highest shares of any industry. With America 

facing increasing competition from abroad and mounting costs and challenges associated with maintaining the 

breakneck pace of innovation, now is the time to maintain and strengthen public-private research partnerships. 

As Congress works to refocus America’s research ecosystem on maintaining semiconductor innovation and 

competitiveness, The Decadal Plan for Semiconductors outlines semiconductor research priorities across the 

seismic shifts noted above and recommends an additional federal investment of $3.4 billion annually across 

these fi ve areas.

Working together, we can boost semiconductor technology and keep it strong, competitive, and at the tip of 

the innovation spear.

John Neuff er

President & CEO

Semiconductor Industry Association (SIA)

Todd Younkin

President & CEO

Semiconductor Research Corporation (SRC)

Sincerely,
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Executive Summary

necessary generational improvements in the energy-effi  ciency with 

which information is processed, communicated, stored, sensed 

and actuated on. Long term sustainable ICT growth will rely on 

breakthroughs in semiconductor technology capabilities that 

enable holistic solutions to tackle information processing effi  ciency. 

Disruptive breakthroughs are needed in the areas of software, 

systems, architectures, circuits, device structure and the related 

processes and materials that require timely and well-coordinated 

multidisciplinary research eff orts.

This Decadal Plan for Semiconductors outlines research priorities 

in information processing, sensing, communication, storage, and 

security seeking to ensure sustainable growth for semiconductor 

and ICT industries by: 

• Informing and supporting the strategic visions of semiconductor 

companies and government agencies

• Guiding a (r)evolution of cooperative academic, industry and 

government research programs 

• Placing ‘a stake in the ground’ to challenge the best and brightest 

researchers, university faculty and students

The U.S. semiconductor industry leads the 

world in innovation, based in large part 

on aggressive research and development 

(R&D) spending. The industry invests nearly 

one-fi fth of its annual revenue in R&D each 

year, second only to the pharmaceuticals 

sector. In addition, Federal funding of 

semiconductor R&D serves as the catalyst 

for private R&D spending. Together, 

private and Federal semiconductor R&D 

investments have sustained the pace of 

innovation in the U.S., enabling it to become 

the global leader in the semiconductor 

industry. Those R&D investments have 

nurtured the development of innovative and 

commercially viable products, and as a direct 

result, have led to a signifi cant contribution 

to the U.S. economy and jobs. 

The current hardware-software (HW-SW) 

paradigm in information and communication 

technologies (ICT) has made computing 

ubiquitous through sustained innovation 

in software and algorithms, systems 

architecture, circuits, devices, materials, 

and semiconductor process technologies 

among others. However, ICT is facing 

unprecedented technological challenges 

for maintaining its growth rate levels 

into the next decade. These challenges 

arise largely from approaching various 

fundamental limitations in semiconductor 

technology that taper the otherwise 
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The Grand Challenge
Information and communication technologies make up over 70% of the semiconductor market share. They continue to grow 

without bounds dominated by the exponential creation of data that must be moved, stored, computed, communicated, secured 

and converted to end user information. The recent explosion of artifi cial intelligence (AI) applications is a clear example, and as 

an industry we have only begun to scratch the surface. 

Having computing systems move into domains with true cognition, i.e., acquiring understanding through experience, reasoning 

and perception is a new regime. This regime is unachievable with the state-of-the-art semiconductor technologies and 

traditional gains since the reduction in feature size (i.e., dimensional scaling) to improve performance and reduce costs in 

semiconductors is reaching its physical limits.  As a result, the current paradigm must change to address an information and 

intelligence-based value proposition with semiconductor technologies as the driver.

Seismic shift #1

Fundamental breakthroughs in analog hardware are required to generate smarter world-machine interfaces that can sense, 

perceive and reason

Seismic shift #2

The growth of memory demands will outstrip global silicon supply presenting opportunities for radically new memory and 

storage solutions

Seismic shift #3

Always available communication requires new research directions that address the imbalance of communication capacity vs. 

data generation rates

Seismic shift #4

Breakthroughs in hardware research are needed to address emerging security challenges in highly interconnected systems and 

Artifi cial Intelligence

Seismic shift #5

Ever rising energy demands for computing vs. global energy production is creating new risk, and new computing paradigms 

off er opportunities with dramatically improved energy effi  ciency

Trends and drivers
Currently information and communication technologies are facing fi ve major seismic shifts:

The Semiconductor Industry Association (SIA) June 2020 report1 demonstrates that federal investment in semiconductor 

R&D spurs U.S. economic growth and job creation and presents a case for a 3x increase in semiconductor-specifi c federal 

funding. For every dollar spent on federal semiconductor research has resulted in a $16.50 increase in current GDP.

The Decadal Plan for Semiconductors complements this report and identifi es specifi c goals with quantitative targets. 

It is expected that the Decadal Plan will have a major impact on the semiconductor industry, similar to the impact of 

the 1984 10-year SRC Research Goals document that was continued in 1994 as the National Technology Roadmap for 

Semiconductors, and which later became the International Technology Roadmap for Semiconductors in 1999. 

1Sparking Innovation: How Federal Investment in Semiconductor R&D Spurs U.S. Economic Growth and Job Creation, SIA Report, June 2020
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Call to Action: Semiconductor 
Technology Leadership 
Initiative
Maintaining and strengthening the leadership of the United 

States in ICT during this new semiconductor era requires 

a sustained additional $3.4B federal investment per year 

throughout this decade (i.e. tripling Federal funding for 

semiconductor research) to conduct large-scale industry-

relevant, fundamental semiconductor research. (The Decadal 

Plan Executive Committee off ered recommendations on 

allocation of the additional $3.4B investment per year among 

the fi ve seismic shifts identifi ed in the Decadal Plan. The basis of 

allocation is the market share trend and our analysis of the R&D 

requirements for diff erent semiconductor and ICT technologies).

The investments through new public-private partnerships 

must cover a wide breadth of interdependent technical areas 

(compute, analog, memory/storage, communications, and 

security) requiring multi-disciplinary teams to maintain U.S. 

semiconductor technology leadership.  

These investments need to be organized and coordinated to 

support a common set of goals focused on market demand to 

provide technologies which enable new commercial products 

and services over the course of the program. The Decadal 

Plan has identifi ed fi ve seismic paradigm shifts required to 

accomplish this overarching Grand Challenge. 

The Decadal Plan serves as a blueprint for policymakers 

who recognize this challenge and seek guidance on areas of 

research emphasis for scientifi c research agencies and public-

private partnerships.

Semiconductor Technology Breakthroughs Rely On
Holistic Optimal Solutions

Driven by Hardware/Software Co-Optimization
Interlocked Multidisciplinary Research
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Seismic shift #1  Fundamental breakthroughs in analog hardware are required to generate smarter world-machine 

interfaces that can sense, perceive and reason.

Seismic shift #2  The growth of memory demands will outstrip global silicon supply presenting opportunities for radically 

new memory and storage solutions. 

Seismic shift #3  Always available communication requires new research directions that address the imbalance of 

communication capacity vs. data generation rates.

Seismic shift #4  Breakthroughs in hardware research are needed to address emerging security challenges in highly 

interconnected systems and Artifi cial Intelligence.

Seismic shift #5  Ever rising energy demands for computing vs. global energy production is creating new risk, and new 

computing paradigms off er opportunities with dramatically improved energy effi  ciency.

Currently information and communication technologies are facing fi ve major seismic shifts:

Introduction 

To support the Decadal Plan development, an international series of fi ve face-to-face workshops was conducted to assess 

quantitatively each seismic shift, assign targets, and suggest initial research directions. Participants and contributors to these 

workshops include academic, government and industrial domain experts. The output of these workshops has guided the 

recommendations in the 2030 Decadal Plan for Semiconductors.

These workshops provided highly interactive forums where key research leaders could evaluate the status of nanoelectronics research 

and application drivers, discuss key scientifi c issues, and defi ne promising future research directions. This is instrumental for the 

published version of the 2030 Decadal Plan for Semiconductors to refl ect an informed view on key scientifi c and technical challenges 

related to revolutionary information and communication technologies, based on new quantitative analyses and projections.

The primary objectives of the Decadal Plan include 
•  Identify signifi cant trends and applications that are driving Information and Communication Technologies and the 

associated roadblocks/challenges. 

• Assess quantitatively the potential and status of the fi ve seismic shifts that will impact future ICT.

• Identify fundamental goals and targets to alter the current trajectory of semiconductor technology.

The Decadal Plan provides an executive overview of the global drivers and constraints for the future ICT industry, 

rather than to off er/discuss specifi c solutions: The document identifi es the what, not the how. In doing so, 

it focuses and organizes the best of our energies and skills to the key challenges in a quantitative manner 

about which creative solutions can be imagined and their impact measured.
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3GPP 3rd Generation Partnership Project

5G fi fth generation wireless technology

5GPoA 5G Point of Attachment

6G sixth generation wireless technology

6G sixth generation wireless technology

III-V  compound of type III and type V elements from 
periodic table

∑∆  Sigma Delta —type of analog to digital converter 
summing diff erence signals

ACC Adaptive Cruise Control

ADAS Advanced Driver-Assistance System

ADC or A/D Analog to Digital Converter

AEB Automatic Emergency Braking

AES Advanced Encryption System

AFE Analog Front End

AFR Annual Failure Rate

AI Artifi cial Intelligence

aJ attojoule (10-18 joules)

AMS Analog Mixed Signal

ANN Artifi cial Neural Network

AR/VR Augmented Reality/Virtual Reality

ASCR Advanced Scientifi c Computing Research

ASIC Application Specifi c Integrated Circuit

BaFe Barium Ferrite material

BAG2  Berkeley Analog Generator—2nd generation from UC 
Berkeley

BEOL  Back End of Line—in semiconductor process

BER Bit Error Rate

BIST Built in Self Test

BITS Binary Information Throughput (in bits per second)

bits/s, bps, Bits per second or Million bits per second
Mbps

BS Base Station

BSD Blind Spot Detection

BSP Bulk Synchronous Programming Model

BW bandwidth 

CAD Computer Aided Design

CBRAM Conductive Bridging Random Access Memory

CCIX Cache Coherent Interconnect For Accelerators

CFR Crest Factor Reduction

CGS capacitance from transistor gate to source

Class A amplifi er circuit with continuous conduction

Class B  amplifi er circuit with switching conduction—positive 
and negative

CMOS Complementary Metal-Oxide-Semiconductor

COTS Commercial Off -The-Shelf

CNN Convolutional Neural Network

CPRI Common Public Radio Interface

CPU Central Processing Unit

CS Compressive Sampling

CTA Cross Traffi  c Alert

CTE Coeffi  cient of Thermal Expansion

CXL Compute Express Link

DAC Digital to Analog Converter

dB decibels—logarithm of a ratio

DDR Double Data Rate

DARPA Defense Advanced Research Projects Agency

DFT Design for Test

DNN Deep Neural Network

DRAM Dynamic Random Access Memory 

DRR Data Reduction Ratio

DMR Digitally Modulated Radar

DNA DeoxyriboNucleic Acid

DNS Domain Name System

DOE Department of Energy

DPD Digital Pre-Distortion

DPPM Defective Parts Per Million

DSL Domain-Specifi c Languages

DSP Digital Signal Processing

EAMR Energy Assisted Magnetic Recording

ECID Exclusive Chip Identifi cation

ECRAM Electro Chemical Random Access Memory

EDA Electronic Design Automation

EDFA Erbium-doped Fiber Amplifi er

EEPROM Electrically Erasable Programmable Read Only Memory

EIRP Eff ective Isotropic Radiated Power

ENOB Eff ective Number of Bits

eNVM embedded Non-Volatile Memory

ET Envelope Tracking

EVM Error Vector Magnitude

FDM Frequency Division Multiplexing

FeFET Ferroelectric Field Eff ect Transistor

fF femto Farad—capacitance measure 10-15 Farad

FFT Fast Fourier Transform (signal analysis)

FinFET fi eld eff ect transistor built as a “fi n” vertically

fJ/op femto (10-15) Joule per operation 

FLOP Floating Point Operation

Acronym Defi nitions
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fmax maximum oscillation frequency or power gain frequency

FMCW Frequency Modulated Continuous Wave (radar)

FoM Figure of Merit

FPAA Field Programmable Analog Array

FPGA Field-Programmable Gate Array

FRESCO Frequency-stabilized coherent optical

FSO Free Space Optical

fT transition frequency where current gain is zero

FTE Full Time Equivalent (engineering resource personnel)

FTTH Fiber to the Home

GAA gate all around technology

GaN Gallium Nitride —transistor material

gm  transconductance or current dependence on gate 
voltage

go transistor output conductance

GaAsSb Gallium Arsenide Antimonide material

GB Giga Byte

Gbps Gigabits Per Second

GDDR Graphics Double Data Rate

GHz giga-hertz (109)

GNN Graph Neural Network

GPS Global Positioning System

GPU Graphics Processing Unit

GS/s Giga-Samples per second (109)

GW Giga Watt (109)

HAMR Heat-Assisted Magnetic Recording

HBM High Bandwidth Memory

HBT Hetero-junction Bipolar Transistor

HD High Dimensional

HDC High Dimensional Computing

HDD Hard Disk Drive

HEMT High Electron Mobility Transistor

HfOx Hafnium Oxide material 

HIVA Hardware-Intensive Virtualization Architecture

HPC High Performance Computing

HTTP Hyper Text Transfer Protocol

HVAC Heating, Ventilation and Air Conditioning

HW Hardware

IAB Integrated Access and Backhaul

IC Integrated Circuit

ICT Information and Communication Technologies

ICM In Compute Memory

ID  transistor drain current

IDS  transistor drain to source current

IEEE Instituted of Electrical and Electronics Engineers

IioT Industrial IoT

IMC Integrated Memory Controller

IMDD Intensity Modulation Direct Detection

InGaAs Indium Gallium Arsenide material

InP Indium Phosphide material

I/O Input / Output

IoT Internet of Things

IP or IP block semiconductor Intellectual Property core

IPS Instructions per Second

J Joule

KGD Known Good Die

LCA Lane Change Assist

LDE Layout Dependent Eff ects

LED Light Emitting Diode

LEO Low Earth Orbit

LiFi  Light Fidelity—wireless optical communication 
technology

LNA Low Noise Amplifi er

LO Local Oscillator

LOS Line of Sight

LPDDR Low Power Double Data Rate

LTE Long Term Evolution—wireless standard

LTO Linear Tape Open

M2M Machine to Machine

MEC Multi-access Edge Computing

MEMS Micro- electromechanical systems

MESO Magnetoelectric spin-orbit

MID Mobile Infrastructure on Demand

MIEC Mixed Ionic-Electronic Current

MIMO Multiple-Input and Multiple-Output

MIST Molecular Information Storage

MIT Metal-Insulator Transition

ML Machine Learning

MLC Multiple Level Cells

MOS Metal Oxide Semiconductor material system

mm-Wave millimeter wave

MRAM Magnetic Random Access Memory

mMTC massive Machine Type Communication

MW mega watt power (106 watts)

mW milli watt power (10-3 watts)
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NAND fl ash  highest-density silicon-based electronic nonvolatile 
memory 

NEP Noise Equivalent Power

NF Noise Figure 

NFC Near Field Communications 

nJ nanojoule (10-9 joules)

NLoS Non Line of Sight

nm nano meter (10-9 meters)

NMOS n-channel Metal-Oxide-Semiconductor transistor

NMR Nuclear Magnetic Resonance

NVM Nonvolatile Memory

OAM Optical Angular Momentum

OFC Optical Frequency Comb

ORNL Oak Ridge National Laboratory

OTA Over-The-Air

OVS Ovonic Threshold Switch

P2P Pear to Pear

PA Power Amplifi er

PAE Power Added Effi  ciency

PCB Printed Circuit Board

PCM Pulse-Code Modulation

PCRAM Phase Change Random Access Memory (also PCM)

PDM Polarization-Division Multiplexing

Petafl ops 1015 fl oating point operations per second

PHY Physical Layer

PKI Public Key Infrastructure

PLC Programmable Logic Control

PLL Phase Locked Loop

PPM Parts Per Million

PRBS Pseudo-Random Binary Sequence

PRD Priority Research Direction

PQC Post-Quantum Cryptography

PUF Physical Unclonable Function

pW/√Hz pico Watt(10-12) per square root of Hertz 

PZT Lead-Zirconia Titanate material

QAM Quadrature Amplitude Modulation

QOS Quality Of Service

QKD Quantum Key Distribution

QLC Quad-Level Cell

QPSK Quadrature Phase Shift Keying

R&D Research and Development

RAID Redundant Array Of Inexpensive Disks

RAM Random Access Memory

RAT Radio Access Technology

RDMA Remote Direct Memory Access

ReRAM, Resistive Random Access Memory
RRAM

RF Radio Frequency

RFFE Radio Frequency Front End

RFIC Radio Frequency Integrated Circuit

RFSOI  Radio Frequency Silicon on Insulator, specialized 
semiconductor process for RF chips

RGB Red Green Blue

RLC Resistance, Inductance(L), Capacitance

RoT Root of Trust

RRH Remote Radio Head

RRM Radio Resource Management

RSA   (Rivest–Shamir–Adleman) is a cryptosystem that is 
widely used for secure data transmission

RTL  Register-transfer Level is a design abstraction which 
models digital circuits

SAR Successive Approximation Register type of ADC

SCM Software Confi guration Management

SDR Software Defi ned Radio

SEC Statistical Error Compensation

Si Silicon material

SIA Semiconductor Industry Association

SiGe Silicon Germanium material for transistor

SIMO Single Input Multiple Output

SiP System in Package

SiOx Silicon Oxide material

SMF Single Mode Fiber

SMR Shingled Magnetic Recording

SNN Spiking Neural Network

SNR Signal to Noise Ratio

SoC System on Chip

SOT Spin Orbit Torque

SPICE transistor / component level simulation program

SRAM Static Random Access Memory

SrFe Strontium Ferrite material

SRC Semiconductor Research Corporation

SSD Solid State Drive

STT-RAM Spin Transfer Torque Random Access Memory

SW Software

Acronym Defi nitions
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Tbps Terabit-per-second

TCB Trusted Computing Base

TCO Total Cost Of Ownership

TEE Trusted Execution Environments

TFET Tunneling Field Eff ect Transistor

THz Terahertz (1012)

TLC Trust Level Control

TOPS Tera Operations per Second (1012)

TPM Technological Protective Measures

TPU Tensor Processing Unit

TCP Transmission Control Protocol

TSV Through-Silicon-Vias

TX Transmitter

UWB Ultra Wideband (communication)

UWBG Ultra Wide Band Gap (transistor technology)

V2V Vehicle to Vehicle

VCO Voltage Controlled Oscillator

VCMA Voltage Controlled Magnetic Anisotropy

VDD Positive supply voltage (CMOS IC)

VDSat  Transistor drain voltage where output current versus 
gate voltage fl attens ou

VGS Voltage between gate and source of transistor

VLSI Very large scale integration

VM Virtual Machine

VMM Vector Matrix Multiplier

VR Virtual Reality

WLAN Wireless Local Area Network

WDM Wavelength Division Multiplexing

xHaul Transport network for 5G

XPoint Cross Point

Zettabyte 1021 bytes

ZF Zero Forcing

ZIF Zero Frequency IF (Intermediate Frequency)

ZIPS 1021 compute instructions per second
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New Trajectories for Analog 
Electronics

Chapter 1

1.1. Executive Summary
Analog electronics deals with real-world continuously variable 

signals of multiple shapes (in contrast to digital electronics 

where signals are usually of standard shape, taking only 

two levels, ones or zeros). The analog electronics domain 

encompasses multiple dimensions as shown in Figure 1.1. 

Also, all inputs humans can perceive are analog, which calls 

for bio-inspired solutions for world-machine interfaces that 

can sense, perceive, and reason based on ultra-compressed 

sensing capability and low operation power (Figure 1.2). 

This extends to real-world interfaces such as communication 

channels (wired or wireless), machine and infrastructure 

sensing and control, as well as environmental, diagnostics, 

and converting various sources of nature-produced energy to 

useable power. The physical world is inherently analog and 

the “digital society” drives increasing demand for advanced 

analog electronics to enable interaction between the 

physical and “cyber worlds.”

Sensing the environment around us is fundamental to the next 

generation of AI, where devices will be capable of perception and 

reasoning on sensed data that is more stochastic in the presence 

of noise, as opposed to exact digital precision. In fact, the human 

brain operates in such a manner, as more of a massive parallel 

analog computation engine. The world-machine interface lies 

at the heart of the current information-centric economy. As 

one example, the next wave of the advanced manufacturing 

revolution is expected to come from next-generation analog-

driven industrial electronics, that includes sensing, robotics, 

industrial, automotive, medical etc. For mission-critical 

applications, the reliability of electronic components is a priority.

The estimated total analog information generated from 

the physical world across an estimated 45 trillion sensors in 

2032 is equivalent to ~1020 bit/s. As a reference, the total 

collective human sensory throughput pales at ~1017 bit/s. Thus, 

our ability to perceive the physical world is signifi cantly 

limited and a signifi cant paradigm shift towards extracting 

key information and applying it in an appropriate way is 

TrendChallengeGrand Challenge Promising Technology

Seismic shift #1
Fundamental breakthroughs in analog hardware are 

required to generate smarter world-machine interfaces 

that can sense, perceive and reason.
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necessary to harvesting the data revolution. Additionally, the 

massive amounts of data from sensors cannot be transmitted 

to the cloud for processing due to limits of communications 

capacity, energy and timeliness of information.

Call for action

The analog interface bridges the physical and digital 

worlds. Our collective ability to access the information of 

the physical world through analog signals is 10,000 trillion 

times below what is available, and radical advances in 

analog electronics will be required soon. New approaches 

to sensing such as sensing to action, analog “artifi cial 

intelligence” (AI) platforms, brain inspired/neuromorphic 

and hierarchical computation, or other solutions will be 

necessary. Breakthrough advances in information processing 

technologies, such as developing perception algorithms to 

enable understanding of the environment from raw sensor 

data, are a fundamental requirement. New computing 

models such as analog “approximate computing,” which can 

trade energy and computing time with accuracy of output 

(presumably how the brain does) are required. New analog 

technologies will off er great advancements in communication 

technologies. The ability to collect, process and communicate 

the analog data at the input/output boundaries is critical to 

the future world of IoT and Big Data. Additionally, analog 

development methodologies require a step increase (10x or 

greater) in productivity to address the application explosion 

in a timely manner. Altogether, collaborative research to 

establish revolutionary paradigms for future energy-effi  cient 

analog integrated circuits for the vast range of future data 

types, workloads and applications is needed.

TrendChallengeGrand Challenge Promising Technology

The Analog Grand Goal is for revolutionary technologies to 

increase actionable information with less energy, enabling 

effi  cient and timely (low latency) sensing-to-analog-to-

information with a practical reduction ration of 105:1.

Decadal Plan for Semiconductors workshop was held on 

“New Trajectories for Analog Electronics” to address this 

Grand Goal. The workshop was organized by and held with 

experts from academia, industry, and government labs, and it 

consisted of fi ve sessions:

• Analog ICT Systems Fundamentals, Challenges, and 

Application Drivers

• Intelligent Sensors: Sensing to Action

• Analog in the THz Regime

• Analog in Machine Learning at the Edge

• Analog Design Productivity and Predictability

The remainder of this chapter on New Trajectories for 

Analog Electronics covers these sessions in more detail 

Invest $600M annually throughout this decade in 

new trajectories for analog electronics. Selected 

priority research themes are outlined below.i

i The Decadal Plan Executive Committee off ered recommendations on allocation of the additional $3.4B investment among the fi ve seismic shifts identifi ed in 
the Decadal Plan. The basis of allocation is the market share trend and our analysis of the R&D requirements for diff erent semiconductor and ICT technologies.

Figure 1.1: The Dimensions of Analog Electronics

Conscious bits
100 bps

8.75 Mbps

Figure 1.2: The brain’s ability to perceive and reason is 
based on ultra-compressed sensing capabilities with 
100,000 data reduction and a low operation power
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1.2. Analog ICT Systems: Fundamentals, Challenges, and 
Application Drivers
Overview and Needs

While nobody can predict how ICT will develop in the future, 

it is worthwhile to explore best-case scenarios that are bounded 

only by what is technically possible. Analog information and 

communication technologies (ICT), which sense and interface 

to the real world, support daily social life and economic 

activities. This section identifi es fundamental limits and 

provides an open forum for brainstorming unserved and 

future applications with their corresponding implications 

for the semiconductor industry. Furthermore, new emerging 

analog solutions are discussed in the context of the 

application space they enable or the trendline in energy, 

bandwidth, etc., that they dramatically alter. All signals are 

fundamentally analog waveforms and restricted by analog/

physics limitations. In many cases, analog signal processing 

is more eff ective and effi  cient for preparing signals for 

interpretation by further digital processing.

For many Analog ICT system drivers, the prime research direction 

is increasing bandwidth for future 6G wireless networks, data 

centers, remote medicine, and beamformers for wideband radar, 

which demand faster Analog-to-Digital Conversion.

Further downstream, demanding specifi cations of denser and 

more power-effi  cient memory have driven 3D architectures 

in Very Large System Integration (VLSI), which face their own 

interesting tests of cost and heat management. Figure 1.4 

shows the roadmap for transitions in FinFET and gate-all-around 

(GAA) transistor design for storage devices which yield better 

channel control and, hopefully, eliminate bottleneck design rules2. 

Other 3D approaches embrace “heterogeneous” integration for 

more effi  cient and eff ective processing of information.

One fundamental question is how innovation in analog 

electronics can help with today’s advanced computing 

and information processing paradigms. This demands a 

much deeper appreciation of device scaling, effi  cient signal 

processing, and circuit architectures that can be incorporated 

in high-speed machine interfaces. There is an even 

greater need for understanding tradeoff s between power 

consumption and other desirable metrics like high gain, noise, 

leakage, and reduced supply interference. One set of device-

level tradeoff s are visualized in Figure 1.5, considering an 

ideal NMOS transistor3.
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and includes resulting research 

direction recommendations. In the 

end it becomes obvious that a holistic 

approach is required to achieve such 

an aggressive goal and leverage 

analog technology to better interface 

with and “make sense” of the real 

world, as well as make eff ective use 

of the information that the real world 

provides. Co-design of such future 

microelectronics systems was called out 

as a key element in the “Basic Research 

Needs for Microelectronics” report 

published by the Department of Energy 

Offi  ce of Science Workshop in 20181. 

This involves evaluating all technology 

levels, from materials through systems, 

which all entail analog electronics 

and microsystems, as well as digital 

processing and software (Figure 1.3). Figure 1.3: Holistic approach required to achieve future analog goals and 
leverage analog technology for better real-world interface1 (courtesy of DoE)
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Figure 1.4: Roadmap for evolution of 3D VLSI transistors and architecture2 (courtesy of Gabriele Manganaro, Analog Devices)

Figure 1.5: An instance of tradeoff s encountered in MOS device scaling3 (courtesy of Peter Kinget, Columbia University)
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As progression is made toward smaller nodes while 

power effi  ciency increases, the improvements in gain and 

transition frequency have reduced drastically (limiting use 

for wireless communication). It should also be noted that 

power-supply voltage cannot be arbitrarily reduced because 

of the implications on signal distortion and noise constraints 

from preferred modes of operation (Class A, Class B, etc.).

Newer circuit architectures will assist in supply-voltage 

scaling. For example, Operational Amplifi ers (Op-Amps), 

conventional VDD scaling runs into smaller output swings, 

higher saturation voltages (VDSat), and larger noise 

consumption in noise-limiting fi rst-stages. Alternative 

structures, such as switched-mode topologies, may be 

implemented to achieve rail-to-rail output, low output 

impedance, and greater bandwidth. 

Future design iterations are underway on three fronts. The 

fi rst is better analog-to-digital conversion, which circumvents 

problems with bandlimited analog signals by effi  cient 

oversampling and quantization. The second is conversion 

of information in sparse analog signals to digital data by 

compressive sampling (CS). The third is feature extraction 

from analog signals, aided by machine-learning, when the 

frequency of the feature is less than the maximum frequency 

content of the signal. One application of compressive 

sampling using a single-pixel camera for fast-spectrum 

scanning is shown in Figure 1.63. 

Sensors and Actuators for the next decade

The mobile phone economy is driven largely by cost, size, 

performance, and bandwidth. Critical to the success of the 

handset’s GPS navigation, optical and electronics image 

stabilization and fi ngerprint authentication is robust sensor 

design. Sensitivity and accuracy grew tenfold in the past 

fi ve years while power, cost, and size have reduced to a 

fi fth in that time4. These trends are expected to continue. 

The fusion of physics and artifi cial intelligence in on-device 

computing has made possible better designs in MEMS-based 

accelerometers, gyroscopes, ultrasonic fi ngerprint sensors, 

biometric sensors, and microphones, to name a few. The 

integration of all these sensors make for seamless execution 

of activities like navigation dead-reckoning, stability control, 

impact detection, adaptive lighting, image stabilization, 

and traction control. Better sensor performance would 

imply higher SNR, higher dynamic range and a less-than-

1mW power consumption regime. It is also desirable to 

fabricate these in a <55 nm node and use ultra-small and 

environment-proof packaging. Sensors and actuators with 

associated signal processing are a key focus of Intelligent 

Sensing discussed in section 1.3.

High-Yielding and High-Performance ADCs in 
Sub-16nm Process Technologies

The need for faster Analog-to-Digital Converters (ADC) can 

be contextualized with an example. In a Digitally Modulated 

TrendChallengeGrand Challenge Promising Technology

Figure 1.6: Fast-spectrum scanning using compressive sampling3 (courtesy of Peter Kinget, Columbia Unversity)
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Radar-based (DRM-based) automotive radar system, a (digital) 

Pseudo-Random Binary Sequence (PRBS) modulates the 

phase of a continuous-wave signal (~79GHz) that is then 

transmitted as the range-fi nding signal. The PRBS is designed 

to enable both unambiguous range (sequence length) and 

range resolution (pulse-width bandwidth) while also providing 

excellent immunity to interference. The refl ected signal is then 

received, sampled by an ADC, correlated, and accumulated in 

real time to determine the target range. Finally, the velocity is 

determined via an FFT calculation. This scheme is simple but 

requires extremely fast signal processing of the multi-GHz ADC 

output data by the correlator and accumulator, in contrast to 

FMCW-based radar. Computational speed requirements are 

even greater when MIMO-based beamforming is applied to 

increase range and angular resolution. The diffi  culty arises 

when the received PRBS signals must have very high bandwidth 

(2-5 GHz) and correspondingly high sampling-rate (4G Sample/

second to 10GS/s) ADCs that must also contend with non-

idealities of jitter, skew, noise, etc. The situation is further 

complicated by the need to process (i.e., correlate, accumulate, 

and do the FFT calculation) the multi-GHz ADC output data 

in real time on the same die as the ADC. This requirement 

for GHz signal processing of the ADC output data requires a 

state-of-the-art CMOS process technology (i.e. 16nm or less) 

which in turn drives the need for ADCs implemented in the 

same sub-16nm process. One example of the architecture of a 

DMR-based transceiver implemented in a 28nm CMOS process 

technology and capable of signifi cant processing gain (> 70 dB)5. 

The performance of this transceiver was indeed limited by 

the achievable digital signal processing rate of the 28nm 

technology used, thereby providing direct evidence of the need 

for ADCs implemented in faster CMOS process technologies.

Given the critical need for GS/s ADCs in sub-16nm 

process technologies for commercial applications such 

as the presented DMR-based automotive radar, there is a 

corresponding critical need for research in this area. At this 

point, much of the published research on GS/s ADCs being 

carried out at universities is driven by pressure to ground 

their ADC research on commonly used fi gures of merit based 

solely on power, eff ective number of bits (ENOB), and sample 

rate. But these completely ignore critical application-based 

requirements (e.g., interference, temperature range, cost, 

etc.) that are essential for real-life use. Therefore, application-

oriented, fi t-for-purpose ADCs must be designed to be 

manufacturable in high-volume production, meeting 

extreme environmental temperature ranges and reliability 

requirements, while also maintaining good FoMs. So, both 

university-based and industrial research into GS/s ADCs must 

be redirected with this goal in mind. In turn, this goal will 

require universities, industry, and funding organizations, 

such as SRC, DARPA, NSF, etc., to partner together to enable 

consistent access to sub-16 nm processes going forward.

Better Power Electronics with GaN and Beyond

Every electronic system or component requires power that is 

converted from various sources. The growing pervasiveness 

of electronics in everything is driving up energy use and 

necessitates higher effi  ciency. Additionally, density is becoming 

more critical for everything from mobile devices to data 

centers, with power being challenged by the volume of basic 

components such as inductors and capacitors. Focus on new 

innovative solutions to address these needs is required to 

address the size, cost and effi  ciency of power conversion. 

A holistic approach to the power chain provides opportunity 

for more optimum solutions, from fundamental devices/

components to topologies and overall power-chain architectures.

The Baliga high-frequency fi gure-of-merit is an important metric 

for power semiconductor devices operating in high-frequency 

circuits6. This FoM predicts that the power losses incurred in the 

power device will increase as the square root of the operating 

frequency, and approximately in proportion to the output 

power. This power loss can be reduced by using semiconductors 

with larger mobility and critical breakdown electric fi eld.  

Gallium Nitride (GaN) devices have been found to have low gate 

capacitance and low on-resistance and, thereby, reduce gate 

driver losses and improve on this metric. In applications like 

wireless power transfer and autonomous cars, techniques like 

Envelope-Tracking, when used effi  ciently in power converters, 

reduce wastage of energy by heat dissipation7.

Also, GaN devices are now being integrated at higher 

levels of hierarchy in Integrated Circuits. These include 

Monolithic Gate Drivers and Switches, Power System 

on Chip, Power System in Package (PowerSiP), and 

Power and Active Interposers with integrated voltage 

regulators. Particularly, PowerSoC will enable integration of 

controller, gate drive, sensing, protection, and inductors (or 

transformers). Integrated Voltage Regulators can provide 

signifi cant benefi ts for VLSI systems in terms of on-chip area, 

switching frequency, and battery life. A roadmap of current 

developments in GaN integration is discussed in8.

Further improvements in substrate technology will help 

sustain this trajectory. For example, 200mm GaN-on-silicon 

and GaN-on-CTE matched substrates look promising. Also, 

Gallium Nitride on Oxide (GaNoX) has superior crystal quality, 

which makes it suitable for a wide spectrum of applications 

while off ering a more attractive price/performance ratio 

when compared to SiC (up to 1200V9). It is expected that 

GaN transistors will replace silicon power MOSFETs with 

a lower-cost and higher-effi  ciency solution. Overall, Ultra-
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Wide Band Gap (UWBG) devices for further effi  ciencies 

and power density is highlighted in PRD 5 of the “Basic 

Research Needs for Microelectronics” report published by the 

Department of Energy Offi  ce of Science Workshop in 20181.

Analog Synaptic Devices for Artifi cial Intelligence

Bioinspired technology in analog design gives an impetus 

to realization of neuromorphic learning and in-memory 

computing that could speed up real-time sensor signal 

processing. However, deep-learning algorithms in cloud-

based systems are very power-hungry. Edge systems 

supporting Internet of Things (IoT) networks perform 

computing at the sensor node and consume less power. 

Therefore, they are preferable in realizing adaptive transfer 

learning. It is here that Emerging Non-Volatile Memories 

(eNVMs) capable of 100 Tera-Operations/Second/Watt (TOPS/

watt) fi nd great applications. These devices include Filamentary 

and Non-Filamentary Resistive-change RAMS (RRAMs), Phase-

Change Random-Access Memories (PCRAMs), and Ferroelectric 

RAMs (FeRAMs). Their structures are shown in Figure 1.7. These 

eNVMs should be designed better to yield denser In-Compute 

Memories (ICMs), which would increase cipher texts, consume 

less energy, and help realize homomorphic encryption.

Also, crossbars used in new architecture should ideally 

have an effi  cient analog-to-digital conversion with tunable 

precision for each column. New architectures may fi nd 

applications in resolving satisfi ability (SAT) problems 

specifi c to applications such as crosstalk noise prediction 

in integrated circuits, model checking, testing of fi nite-

state systems, technology-mapping in logic synthesis, 

and AI planning and automated reasoning. Here, analog 

SAT solvers promise to be more effi  cient in time, area, and 

energy11. They provide additional means to trade off  time 

and power by implementing single variable cells or switched 

variable capacitors12. Wider research is now underway for 

scaling modular parallel circuits and systems for SAT solving 

and developing programmable ICM unit cells with local 

SRAM and low-energy charge-domain multiply-accumulate 

compute elements13. Additional exploration and study of the 

brain’s neural spiking and integration to trigger further spikes, 

combined with pseudo-analog memory (single variable cells and 

widely parallel), may provide innovation in processing sensor 

data for the future. Further discussion of Analog Machine 

Learning at the edge is addressed in section 1.5.

1.3. Intelligent Sensing: Sensing to Action
Overview and Needs

Over the next decade, a “smart society” including smart 

factories, smart cities, smart cars and more will become 

a reality enabled by increased advances in electronic 

technology. Key drivers include energy effi  ciency, safety, 

productivity, fl exibility, and health, as well as entertainment 

and personalization. Addressing these drivers requires sensing 

the real world and taking appropriate action in a timely and 

effi  cient manner. The vast majority of sensors receive analog 

inputs from the physical world. Digitizing these signals 

creates enormous amounts of raw data, and the data load 

is predicted to grow at exponential rates given the sheer 

number of sensors predicted to be deployed. The questions 

to be addressed are how, when, and where to process the 

data from the growing application of sensors in order to 

extract information, gather insights, make decisions, and 

take action.

With increasing demand for visual information (security 

cameras, vehicle 360 cams, facial recognition, etc.) and higher 

resolution, the average data-acquisition rate per sensor has 

seen an exponential increase. Data growth from sensors 

(Figure 1.8) has been estimated to reach 1BB = brontobyte = 

1027 bytes-per-year by 2032, which corresponds to >1020 bit/s. 

(See Appendix A3 for details.)
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Figure 1.7: Structures of analog synaptic devices used in AI Engines10 (courtesy of Michael Niemier, University of Notre Dame)
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Analog Sensor Data-Deluge Problems

There are two key issues with this level of data generation: 

1) Digesting or eff ectively using the data output from 

sensors toward a smarter society; and 2) Processing the 

data effi  ciently to take appropriate action.

Digesting the data is well beyond human capability in 

volume, comprehension, and timeliness. Total human data 

consumption is estimated to be ~1017 bit/s (see Appendix A2), 

while the estimated data generation is >1000X over the next 

decade. As exponential sensor growth is projected, machine 

processing is required to make eff ective use of the sensors 

being deployed.

This leads to the second problem of processing this data to 

take appropriate action. As indicated, machine processing 

is required, which typically streams data over some 

communications medium for processing and sending the 

appropriate information back to take action. At the data rates 

projected (1020 bit/s), this would require 100MW, assuming 

only 1pJ/bit. The most aggressive communication targets from 

this Decadal Plan are >100X this level (0.1nJ/bit), resulting in 

10GW for communications alone.

Signifi cant change is required if we are to make use of this 

projected growth in analog sensor data to address the drive 

for a smarter society. A smarter society can better manage 

the grid infrastructure in real time and on microgrid scale 

(including the dynamics of renewable energy), provide 

fl exible/effi  cient manufacturing with improved yields, and 

improve building effi  ciency through lighting and HVAC 

systems that track need rather than predetermined programs.

Key to addressing the analog data deluge is increasing the 

capability of the sensor, signal processing, and subsequent 

decision-making to take action locally rather than 

transmitting data any signifi cant distance for processing 

(i.e., to the cloud as an extreme). This “Sensing to Action” 

has the objective of optimizing the system partitioning to 

manage the amount of data communicated in the system. 

There will be a balance of what can realistically be processed 

locally regarding power/energy and cost with global 

considerations to improve environment and health. This 

aligns with a model of fast decision action locally and slower 

integrated learning to improve decision making. 

Guidance can be taken from the human sensory/processing 

system, which generates ~10 Mbits/s via the body’s sensory 

systems but consciously only processes <50 bit/s for an 

overall “data to information bits” ratio of about 200,000:1. 

The brain continues to learn in the background at a slower 

rate to enhance the “sensing to action” in the foreground. 

Thus, we initially target a metric of similar magnitude 

achieving a reduction of “data” to actionable “information 

bits” of 100,000:1 or Data Reduction Ratio (DRR). 

This is highly aggressive and will not be addressed for every 

sensing application. 

Traditional signal compression is not enough. Compression 

typically targets reconstruction of the original signal 

and retains some application generality. For cases where 

reconstruction is necessary, such as video and audio 

entertainment or live video for remote medical diagnosis 

and surgery, this solution works well but has been limited to 

10x–200x data reduction (Figure 1.9)14.
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Figure 1.8: World sensor data trend and projection  

Data Reduction Ratio: DRR =
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Figure 1.9: Data compression tradeoff  (adapted from14)
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A paradigm shift in how sensed signal or “information” is 

processed is required in order to provide an output (analog 

or few bytes) of detected “actionable information” from the 

sensed signal. High understanding of the key action objective 

is needed, as well as the signal and the associated “detection 

entropy”—and thus certainty or robustness. In classical 

information theory, Shannon defi nes the “information entropy” 

metric as the absolute minimum amount of storage and 

transmission needed for succinctly capturing any information 

(as opposed to raw data)15. Here this concept is being extended 

to the minimum actionable output required to take action, 

which is detected from sensing. This output could be data 

bits (even a single bit) or an analog output signal controlling 

driving actuation. To produce an actionable output, system 

knowledge will be required, as will consideration of added 

intelligence to all system components, from the sensor itself 

to analog signal processing, and possibly neural processing 

in analog and digital domains. Therefore, overall co-design 

will be required, as highlighted in the “Basic Research Needs 

for Microelectronics” report published by the Department of 

Energy Offi  ce of Science Workshop in 20181.

There is also the possibility to sense more things, especially 

with the use of more aff ordable electronics to perform 

spectroscopy. The combination of diff erent sensing modalities 

(sensor fusion) opens the possibility for better system optimization 

and, potentially, much better sensing capability. The way humans 

interact with the world is also an area of increased attention 

and possibility. Augmented reality and similar technologies will 

potentially create diff erent ways for human-machine interaction, 

and sensing-to-action is one of the key enabling technologies.

We are on the verge of exploding data from sensors—a 

data deluge. Currently the data is neither digestible nor 

practical to transmit any meaningful distance. The need for 

these sensors for a smart society is established, and there 

are multiple application trends growing both the number of 

sensors and the amount of data they produce. The amount 

of data must be decreased through intelligent reduction by 

moving toward a model of “Sensing to Action” to transmit 

minimal information bits. An objective of a Data Reduction 

Ratio of 100,000:1 on average has been set to address this. 

There are multiple areas of research needed to tackle such an 

aggressive target, and an initial list has been recommended.

The second session of the “New Trajectories for Analog 

Electronic” focused on “Intelligent Sensing: Sensing to 

Action,” directly aligning with the preceding discussion. 

Following is a summary of invited speakers’ key points, 

followed by areas for future research focus.

The keynote from academia16 highlighted distributed 

intelligence, including the “Internet of Actions.” Local and 

distributed processing enables and provides advantages in latency, 

energy effi  ciency, security/privacy, robustness, and autonomy. This 

was highlighted via the human body model (Figure 1.10) and 

other biological systems, which are hierarchical but heavily linked 

control systems with multiple feedback paths. The key point 

was to send only information that is needed, send it as slowly 

as possible, and process it locally where possible. Examples 

were given of early sensing/processing technology, as well as 

processing with the most appropriate technology—analog, 

digital and even chemical. Overall, communication costs are high 

and processing costs (energy, etc.) are signifi cantly lower16 .

The fi rst industry panelist17 discussed a mobile/portable AR/VR 

application that highlighted a need for local processing at very 

low power and with multiple sensing modalities to be eff ective. 

Latency and frame rate are critical for a natural human 

interface, which requires local performance. A key requirement 

to drive technology monolithically is integration for size 

and weight, in addition to using board, fl ex, and package 

integration methods such as a triple-stacked sensor example 

(pixel+DRAM+logic). System co-optimization is necessary to 

satisfy the requirements stressing higher energy cost of 

data transfer versus processing17.

The second panelist was from industry and focused on “accurate 

enough” sensing modalities and signal processing, as well as 

combining multiple sensors for robust decisions and actions18. 

Additionally, “active sensing” and self-calibration of sensors could 

provide additional performance and capability (Figure 1.11). 

High value was indicated for sensing and action in industrial/

robotics, automotive, infrastructure, and health/medical 
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Grand Goal: Analog-to-information compression with a 

practical compression ratio of 105:1

Figure 1.10: Human body internet and human-centric computing 
(courtesy of Jan Rabaey, UC Berkeley16)
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applications. Also highlighted was the very high “raw data” that 

sensors produce and necessary information reduction to action 

for effi  ciency. A specifi c example included automotive ADAS/

Autonomous multi-sensor images, where the detected object is 

the end result and orders of magnitude less “data”18.

The next panelist was from academia and discussed compressive 

sensing, where it works and where it does not work19. Data 

can be reduced via sparse/compressive sampling, but post-

processing for reconstruction can be costly from an energy 

perspective. Drawing again on biology, sparse processing locally 

per the application need has value. The necessity for continued 

building-block optimal performance innovation for future 

sensing-to-action applications was stressed19.

A fourth panelist, from industry, presented a highly integrated 

SoC for IoT, which is required for small form factor wearables 

and low power20. The need for an “always on” processor to 

offl  oad the main processor, allowing duty cycling for power 

savings, was highlighted. Customization of the technology 

for the application was again stressed, including hardware 

accelerators for ML that are customized for low power and 

object detection or other functions. NVM and compute in 

memory were highlighted as key technology needs20.

The fi nal panelist was from academia21 and highlighted 

the need for eff ective and effi  cient human interfaces to 

therapeutically address medical conditions. The requirements 

include local processing, low power, portability, and human 

body compatibility. Learning and adaptability are key 

capabilities to make the solution personal and eff ective. There 

are very signifi cant challenges to “nerve interface” in the 

brain but opportunities for in-ear sensors as alternatives to 

probes while still providing eff ective “information”. Reference 

was also made to human biological processing as a model to 

improve such interfaces and therapies21.
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Figure 1.11: Accurate enough active sensing and calibration (courtesy of Baher Haroun, Texas Instruments18)

Figure 1.12: Always-on processor (courtesy of Rashid Attar, Qualcomm20)
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Fig. 1.14 presents an overview of a sensing-to-action system 

that provides a context to the open questions/challenges 

outlined below and to the research needs in the following 

subsection. The open questions/challenges include:

• “Trillions” of sensors generate redundant and unused “data.”

• Cloud is not the answer.

• Communication is a bottleneck. 

• Power to process redundant data is not effi  cient

• Latency is too long for local control and action

• Intelligent Sensors are needed to drive local and timely action.

Key Areas of Focus and Follow-on Research

Systems solution and co-design approach: This holistic 

approach is recommended for the most robust, compact, 

energy-effi  cient, and cost-eff ective solution. This will require: 

• Intelligent sensors and sensor-fusion research—multi-

sensor distributed intelligence

• Applications and system knowledge research

• Hierarchical and distributed exploration/optimization

• Collaborative multi-expertise research projects—Moon 

Shot demonstrator platform

• Common goal/objective to drive analog technologies—

can spin out technologies to other applications

• System approach to optimization that crosses boundaries—

sensor, analog processing, digital processing, ML/detection, etc.

• Research most appropriate domain for signal capture—

energy and reduced sensor data rates

Leverage human systems as a model: Signifi cant discussion 

evolved around leveraging of human systems to provide only 

what is needed with minimal communication via a hierarchical 

sensing-to-action solution. This will require:

• Local sensing to action for many applications, including 

“selective” or “detecting” smarter sensors that minimize 

further signal processing and power

• Learning and adaptive solutions for improving both 

accuracy and effi  ciency

• Understanding “minimum” performance needed for 

robustness—SNR, resolution, number of bits, etc.

• Local feedback (not to cloud) for effi  cient and timely 

sensing to action

• Overlays with ML at the edge and Analog Machine 

Learning session

• Heterogeneous sensing—combination and multimodal 

sensing fusion

• Research how to have always-on “early detection” of 

anomaly in system for further processing

• ML may determine “normal” and set thresholds for 

anomaly detect

• Increasing analog designer’s knowledge and understanding 

of biology and its interface to our physical world in order to 

make a substantial and meaningful impact

Flexible, scalable platform and technology: Due to the wide 

range of sensing-to-action applications, there is a need for 

a fl exible and scalable platform that addresses effi  ciency 

(power and cost). This will require:

• Technologies: memory, sensors, domain matched to signal, 

local, power effi  ciency

• Advanced building blocks research for performance and/or 

ultra-low power

• ADC, PLL, DAC, VCO, high speed links, near zero power

• New architectures—time-based, ring amps, noise-

shaping SAR, Switch Cap PA
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Figure 1.14: Local and hierarchical intelligent sensing
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• Array-based processing—multi-sensor, multi-modes, beam 

processing, forming/detecting

• Can address low-performance sensors with multiple to 

improve performance (SNR)

• Multi-sensor design and feedback to sensor for improved 

performance, redundancy, and safety

• Heterogeneous sensing—combination and multimodal 

sensing fusion

• New devices for high performance or alternate 

architectures 

• Analog ML in RRAM, MRAM, or other existing and 

emerging technologies

• Digital assist w with new advanced digital devices

• Analog Mixed Signal Machine Learning and/or CMOS neural 

networks—also highlighted in the Analog in Machine 

Learning at the Edge session

• Leverage analytics/machine learning for analog circuit 

design—faster, more optimum, less error prone. This is 

required to be able to quickly address multiple applications 

with predictable and reliable design—also highlighted in 

the Analog Design Productivity and Predictability session

Additional topics

• Secure sensors: Security and privacy were raised as a need 

(covered in Chapter 4). Local sensing-to-action improves 

security simply by reducing the number of attackable 

interfaces and communications ports. 

• How to detect if sensor is “spoofed”—part of anomaly 

detection

• Need for methods to balance privacy and security with 

the public good—especially when associated with cyber-

biological interfaces and sensing

• Advance human-machine interface: In order to be more 

autonomous, local, and mobile, new human interfaces will be 

needed, especially for on-body and intra-body applications.

• For VR/AR—not today’s keyboard/mouse/screen 

• For health—on-body or internal sensing and action—

including neural interface

• Moon Shot collaborative projects: leverage low-cost parts 

for system solution

• E-nose or E-taste intelligent sensor

• Active biomedical: modulate treatment based on sensing 

(Parkinson’s, pancreas, cancer, Alzheimer’s) 

• Wearable AR/VR all-the-time solutions—FB vision

1.4. Analog in the THz & 
Optical regime

Overview and Needs

Analog interfaces continue to expand in level of performance 

to enable new and important communications and sensing 

modalities. Overall communications challenges are covered in 

the specifi c Communications chapter later in this report. One 

vector is toward higher frequencies from 10s of GHz to THz 

and optical wavelengths for improved sensing applications. 

Electromagnetic waves typically in a range of 300 GHz to 

3 THz and above classify as Terahertz (THz) waves. There 

are many advantages to expanding the use of their shorter 

wavelength. For communications, it would mean greater 

spatial multiplexing and parallel channels. More importantly, 

the massive bandwidth in this portion of the spectrum can be 

used for high data-rate wireline and wireless communication. 

For imaging, it would mean fi ner spatial resolution, enabling 

applications like through-wall imaging, non-destructive 

evaluation for detecting manufacturing defects, and highly 

automated driving/navigation in poor visibility conditions.

New challenges arise to address the deluge of data at such 

high frequencies, including devices, interconnect, power, 

linearity, noise, time resolution/noise to packaging, antennas/

interface, interference, and signal processing. The Analog 

in the THz and Optical regime session focused on the key 

value and challenges for analog device, circuit, and system 

solutions, addressing analog interface future modality 

requirements and application needs.

THz integrated circuits and applications

Research on transistors that operate in the 100 GHz to 

2-3 THz range is gaining momentum. The main challenge 

is to reduce cost and increase market size. Bandwidth will 

increase for the SiGe, InP HBT, InP HEMT, and GaN variety but is 

likely limited for CMOS, wherein further scaling by shortening 

gates and use of FinFETs is providing diminishing returns22.

It then becomes necessary to consider technologies other 

than CMOS. InP Bipolar Transistors, for example, give greater 

electron transport (vd = 3.5×107 cm/s) than Silicon (vd = 1×107 

cm/s). Also, InP HBTs have wider bandgap and, hence, higher 

breakdown fi eld. Figure 1.15 gives better context of the 

structure of the InP HBT and tabulates strategies to increase 

bandwidth. Table 1 gives a scaling roadmap for the InP HBT 

that leads to ultra-low resistivity contacts22. It is prudent to 

recognize tradeoff s at advanced nodes. For instance, at the 
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64 nm/ 2 THz and 32 nm/ 3 THz node, there is a need for 

higher base contact doping for greater β and for moderate 

contact penetration. It is possible to employ base regrowth 

using thin, moderately doped intrinsic base InGaAs or GaAsSb 

with a carrier concentration of about 1019/cm3. By current 

process runs, it is also seen that GaAsSb intrinsic base is 

resistant to hydrogen passivation of carbon base dopants. 

A similar prognosis for improving InAs MOS-HEMTs reveals 

that these transistors will run into scaling limits in terms of 

gate insulator thickness and source access resistance. These 

may limit fT to about 1200 GHz and fmax to about 3000 GHz.

CMOS platforms for THz imaging, sensing, and 
communication

There are challenges in realizing high-performance THz 

circuitry in CMOS technology. The highest unity current 

gain frequency, ft, and unity maximum available power gain 

frequency, fmax, of NMOS transistors fabricated are around 

280 and 320 GHz, respectively, in 45 nm technology23. 

Interconnects to top metal layers signifi cantly reduce 

performance by introducing parasitic capacitance, resistance, 

and inductance. Also, reducing supply voltage with the 

technology scaling makes generation of a suffi  cient power 

level more diffi  cult. Nevertheless, the nonlinearity of 

components like Schottky diodes and MOS varactor diodes24 

with cutoff  frequencies over 2 THz has been exploited in 

an attempt to operate in this frequency regime. Further 

encouraging are fi ndings that effi  ciency of on-chip patch 

antennas realized in a 130-nm CMOS process with a 2 mm thick 

top metal layer and a total dielectric thickness between silicon 

and the aluminum bond pad layer of 7 mm actually improves 

to ~80 percent at 1 THz from ~30 percent at 300 GHz24. The 

highest output power level of CMOS circuits is shown to be –1 

dBm at 300 GHz. Also, III-V devices generate 5–15 dB higher 

power over the same frequency range. Interestingly, a cascade 

of a symmetric MOS varactor frequency quintupler and an 

asymmetric MOS varactor frequency doubler can be used to 

generate –23 dBm at 1.3 THz and is only 5 dB less than that 

of its III-V circuit counterpart24. This suggests a possibility to 

reduce the gap between the output power levels of CMOS and 

III-V circuits at this frequency regime.

Receivers can be categorized into either incoherent 

receivers, which detect only the amplitude of input signals, 

and coherent receivers, which detect both the amplitude 

and phase. The lowest measured noise fi gures for CMOS 

receivers are 9 dB at 200 GHz, rising to 16 dB at 305 GHz, and 

they are 4.2 dB and 7.7 dB higher than receiver circuits using 

III-V devices at the respective frequencies. At frequencies 

above 300 GHz, noise fi gures of CMOS and SiGe HBT circuits 

increase due to higher order subharmonic mixing. Also, the 

signal strength of the integrated frequency multiplied local 

oscillator at these frequencies is insuffi  cient to properly 

switch devices, and this again degrades conversion loss and 

noise fi gure. However, this problem can be solved by using a 

separate high-power-high-effi  ciency frequency multiplier and by 

lowering the order of sub-harmonic mixing.
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Figure 1.15: InP HBT structure and scaling strategies to double 
bandwidth (courtesy of Mark Rodwell, UC Santa Barbara22)

Emitter  

Junction width 128 64 32 nm

Access resistivity 4 2 1 Ω- cm2

Base

Contact width 128 64 32 nm

Contact resistivity 5 2 1.15 Ω- cm2

Collector

Thickness 75 53 38 Nm

Current density 18 36 72 mA/μm2

Breakdown 3.3 2.75 ~2 V

fτ 730 1000 1400 GHz

fmax 1400 2000 2800 GHz

Digital M/S latch 330 480 660 GHz

Table 1: InP bipolar scaling roadmap
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THz transceivers have many everyday applications. A THz 

imaging system could typically include a pixel array, analog 

multiplexers, an amplifi er bank external to the pixel array, 

and column and row decoders. A pixel consists of a patch 

antenna, a diode connected transistor for detection, a 

double-stub matching network, and an access transistor25,26. 

It was seen that the average responsivity and NEP of the 

imaging array including the amplifi ers was 2600 V/W and 37 

pW/√Hz, respectively, with a minimum NEP of 13 pW/√Hz25. 

This is particularly useful to consider when designing navigation 

systems in autonomous vehicles that encounter operational 

challenges in visibly impaired conditions.

THz receivers can also be used in gas sensing by rotational 

spectroscopy27. To ensure that lines of diff erent gases do not 

overlap, the receiver needs to detect weak energy absorption 

in the presence of much larger baseline variations, instead 

of detecting a small signal in the presence of noise. Here, 

a frequency modulated signal is used to enable detection 

of small absorption dips. Finally, wireline communication 

over a dielectric waveguide is being developed to mitigate 

the complexity of high data-rate communication over 

copper wires28. Frequency-division multiplexing (FDM) and 

polarization-division multiplexing (PDM) can be simultaneously 

used to increase the data rate over a given bandwidth29. 

Automotive and Industrial Radar 

Increased resolution of automotive radar, now in the 77 

GHz regime30, has been integrated into algorithms that 

guide autonomous control of vehicles, including Blind-Spot 

Detection (BSD), Adaptive Cruise Control (ACC), Lane-Change 

Assist (LCA), Cross-Traffi  c Alert (CTA) and Autonomous 

Emergency Braking (AEB). Figure 1.16 shows graphically two 

target milestones in terms of angular resolution for obstacle 

detection. It is derived that for a 0.3° radar, a 70x70cm array 

would need as many as 122,500 antennas and requires MIMO 

or advanced algorithms to have feasible hardware complexity.

While moving to higher frequencies can achieve the target 

angular resolution in a smaller form factor, it comes with a 

penalty in Signal-to-Noise Ratio (SNR), which is contingent 

on output power, antenna gain, wavelength, noise factor, 

and the target’s radar cross-section, among other metrics. 

Complicating this is the fact that the refl ected signal from a 

target drops as 1/R4 over range R while interfering power from 

a single radar drops as 1/R2. It is also important to optimize 

application-specifi c data rates for SIMO and MIMO systems. It 

behooves designers to consider that low-level sensor fusion 

will require moving 10s-100s of Gbps of radar, camera, and 

Lidar data to high performance fusion nodes in the near 

future, and that such high-traffi  c signal processing should be 

compatible with passive cooling and IC packaging. 

Analog Beamforming Antennas for 5G

As 5G is being implemented, we fi nd that each facet of 

interconnectivity requires its own communication protocol. 

To explain further, mobile broadband requires capacity of 

10 Tbps/km2, Internet of Things requires ultra-high density 

of 1 million nodes/km2, and so on. A 5G analog beamforming 

antenna array would have to be accurately designed to have 

the electrical length from the central feed point to each 

antenna patch be identical in terms of phase and loss. It 

becomes necessary to evaluate if mm-Wave communication 

merits the cost of these dense-phased arrays. There are 

also associated challenges of IC fabrication, testing, and 

packaging (particularly, the avoidance of cracks in solder 

bumps). In operation, even in the worst case of when 4 

channels add coherently, a -60 dB isolation is required with a 

input-output parasitic capacitance of less than 10 fF31.

To make dense edge-based signal processing arrays, a harder 

look at electroforming, casting, and 3D printing technologies is 

needed. Similarly, for dense broadside arrays, dense control 

I/O and better thermal design are imperative. It may also help 

to explore the variations in output power versus the number 

of antenna elements for diff erent device technologies like 

GaN, SiGe, SOI/CMOS, etc. All these factors constitute an 

approach of codesign between antenna design, IC design, and 

waveform engineering.
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Figure 1.16: Short-term performance targets for High Elevation Angle Resolution in automotive radar 
(courtesy of Brian Ginsburg, Texas Instruments30)
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Integrated Silicon Photonics for Communication 
and Sensing 

A key component in integrated photonics is the optical 

ring resonator. The setup generally consists of an input 

linear waveguide, the light coupled to a ring waveguide 

that acts as an optical resonator at resonant wavelengths. 

The strength of coupling depends on their separation and 

respective refractive indices. The light of built-up intensity 

may be coupled to an output bus waveguide, which serves 

as a detector. The system, therefore, behaves as an optical 

fi lter with its appropriate transfer function. Such a transfer 

function is shifted in and out of resonance by depleting 

carriers out of the ring resonator. One nice development has 

been the use of interleaved junctions in the transmit modulator 

around the ring. This structure (Figure 1.17), enabled by 

advanced lithography, helps to fully deplete the junction of 

carriers at low voltages like 1-1.5 V for the largest frequency 

shift. The result is highly sensitive structures with quality 

factors of up to 200,00032. This can be driven with CMOS logic 

inverter (1.2 Vpp) to enable a 5 Gb/s data rate at a 3 pJ/bit 

optical energy cost33 and about 3 dB insertion loss.

For communication, if the system is to function as a transceiver, 

it is necessary to account for insertion loss from input laser 

to photodetector and associated modulation loss. When 

accounting for electrical overhead in terms of Energy/bit, 

design must consider power consumption by the serializer, 

photodetector capacitance in the receiver, etc. Also, there is the 

challenge of increasing voltage requirements for eff ecting 

suffi  cient photons per bit at higher data rates. Plus, with 

every new ring added, there is a cost in thermal tuning.

Analog-photonic links are now used to simplify mm-wave 

node IC architectures and can handle up to 1000 antennas 

per chip. They have also greatly increased energy savings 

in the process and are vastly more energy-effi  cient than 

the digital links in the signal chain. Figure 1.18 shows 

a breakdown of comparative power consumption in the 

constituent (digital and analog/photonic) architectures.

Key Areas of Focus and Follow-on Research

Device exploration for THz solutions: Key to THz application 

is transmission and reception of signals in the greater-than 

100GHz through low THz range of frequencies. This requires 

power effi  cient gain and detection of signals with appropriate 

linearity and noise via “devices” (transistors typically). This 

will require: 

• Fundamental limits analysis of multiple technologies 

(i.e., CMOS, GaN SiGe, InP, InGaAs, and beyond) for THz 

application – receivers/transmitters

• Benchmark comparison of technologies 

• System performance implications study

CMOS (or future other) platform integration: Single device 

performance is part of the solution where additional platform 

processing and interface would be required. CMOS is 

predominant today. Integration of specifi c THz active devices 

and passives needs exploration and optimization.

• Integration potential and limits of technology

• Optimization function split – platform or other technology 

for system solution

• Optimization of platform for THz applications (CMOS or 

future other)

THz array system solutions: It is clear that future THz imaging 

and communications systems require some type of beam 

capability for gain and selectivity for SNR and resolution. 

Architectures that are power effi  cient, cost competitive, 

and achieve performance targets will be required, and the 

optimum split is dependent on technology choice. 

• Optimum array per application—frequency, BW size, and 

signal distribution

• Processing architecture—distributed, aggregated, analog, 

and digital

• Frequency limits for imaging—range and resolution

• Accurate, low-noise, and tightly synchronized timing 

solutions/clocks

Silicon photonics integration and application: Silicon 

photonics holds promise of extending frequency and 

bandwidth for multiple applications, from sensing to 

interconnect to communications. Challenges of integration 

and power/area effi  cient optical-electrical-optical conversion 

and interface continue and need to be addressed to make 

broader application of this technology.

Packaging and heterogeneous integration: At THz 

frequencies and beyond (optical), interfaces to the outside 

world are challenged by parasitic eff ects from traditional 

resistance, capacitance and inductance to fringing, roughness, 

and index of refraction at multi-GHz frequencies. The 

parasitic eff ects have severe eff ects on transmission loss 

and refl ection impacting effi  ciency and SNR. Additionally, 

integration of multiple technologies will be required and may 

not be possible on a single chip and/or require very closely 

couple passives. Architecture optimization covering device 

through interconnect and packing, plus coupling to the 

package, is a key area of research need.
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Figure 1.17: Two examples of interleaved junction structures in optical ring resonator transmitters (courtesy of Vladimir Stojanovic, UC Berkeley 32)

Figure 1.18: Power breakdown between analog/photonic and digital architectures in the signal chain (courtesy of Vladimir Stojanovic, UC Berkeley32)
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1.5. Analog in Machine Learning at the Edge 

Overview and Needs

Machine Learning (ML) is expected to be one of the next 

major disruptive technologies. It will aff ect the way we access 

and analyze information, the way we teach, and the way we 

learn. However, the current state of ML is characterized 

by an extensive use of high-performance computational 

resources, with memory footprints, compute loads, and 

energy costs that are all quite large. Unfortunately, all 

implementation environments—from datacenter to network 

edge—are subject to signifi cant resource constraints. 

Likewise, specialized systems to support critical applications, 

such as autonomous driving, require interaction and 

communication of multiple components and can approach 

datacenter complexity. The use of analog techniques in ML at 

the edge could off er new solutions to the energy constraints and 

complexity/footprint challenges that occur where autonomous 

or local intelligence and decision are necessary. 

While ML is going to be a huge driver for improving the 

computational power of systems to be able to run more 

complex algorithms, it will lead to an increasing complexity 

of system design and very high power consumption 

by the machines. For example, the Sunway TaihuLight 

supercomputer in China achieves 93 petafl ops consuming 

15,371 Megawatts, nearly enough to power a small city34. 

In contrast, the brain is one of the most energy-effi  cient 

compute systems, which can achieve around 38 petafl ops at 

just 20 Watts operation power34. It has a complex architecture 

with an intertwined memory and appears to “compute” based 

on highly simplifi ed analog and digital operations. Training at 

the edge allows for adaptation to local conditions, which may 

result in energy, speed, and area benefi ts. The main push is for 

in-memory computing with analog memory.

Edge computing is a distributed computing topology where 

information processing is located close to the source of 

information, bringing computation and data storage closer. 

Because communication bandwidth is limited and privacy 

is an utmost concern, all the data cannot be sent to the 

cloud. Edge computing is benefi cial in analyzing data that 

is collected by sensors at remote locations. Using digital 

processing devices, the sensors’ data would have to be run 

through an ADC before use. The use of analog techniques 

in ML at the edge could off er new solutions to the energy 

constraints and complexity/footprint challenges that occur 

where autonomous or local intelligence and decision are 

necessary. For example, performing inference at the edge 

would dramatically compress the amount of information that 

has to be sent downstream. Training is typically conducted 

at the cloud now (Figure 1.19). Training at the edge would 

enable new functionalities, e.g., real-time adaptation to local 

conditions, resulting in signifi cant energy and speed benefi ts. 

This section will highlight the challenges and explore possible 

research directions leveraging analog components, devices, 

and systems for such ML environments.
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Figure 1.19: Machine learning/neuromorphic computing applications. (Performance numbers are from35)
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Analog In-memory Computing

The critical operation performed by any neuromorphic 

network and, more generally, many machine learning tasks is 

a vector-by-matrix multiplication (VMM). Such operation can 

be very effi  ciently implemented with analog circuits utilizing the 

fundamental Ohm and Kirchhoff  laws (Figure 1.20). This circuit’s 

main component is an analog memory cell with adjustable 

conductance G, used at each crosspoint of a crossbar array and 

mimicking the biological synapse. VMM circuits based on dense 

emerging analog memories can be remarkably compact, leading 

to superior speed and energy effi  ciency. Additionally, dense 

analog VMM circuits may allow storing all weights locally on a 

chip, thus dramatically reducing data communication overhead, 

e.g., moving data in and out from the off -chip memory, which 

would be typical for digital implementations. This is especially 

important since many machine learning / neuromorphic 

computations are both compute- and data-heavy.

Figure 1.20 shows one specifi c “current-mode” fl avor of 

analog VMM circuit in which inputs and outputs are encoded 

in instantaneous voltage and current magnitudes, respectively. 

Other implementations have been suggested, e.g., time-mode 

VMM circuits in which inputs and outputs are encoded in time 

duration of fi xed-amplitude voltage pulses, or hybrid VMMs in 

which bits of input vector elements are applied sequentially, bit 

by bits, and the outputs are computed by properly accumulating 

partial results according to the bit signifi cance36,37. Each approach 

has its cons and pros. For example, variable amplitude 

encoding may require larger peripheral circuits, while the time-

domain approach’s main drawback is exponential scaling of 

latency with the computing precision.

Potential advantages of analog VMM circuits for neuromorphic 

computing had been recognized several decades ago. However, 

up until recently, such devices were implemented mostly 

as “synaptic transistors”, which may be fabricated using 

the standard CMOS technology38. This approach was used 

to implement many sophisticated, effi  cient systems —see, 

e.g.,39. However, these devices have relatively large areas 

(> 103F 2, where F is the minimum feature size), leading to 

higher interconnect capacitance and hence larger time 

delays. The recent advances in memory devices, e.g., based 

on metal oxide and solid-state electrolyte resistive switching, 

phase change, magnetic, and ferroelectric materials49 opened 

up new opportunities for analog computing. Some emerging 

memories can be stacked vertically, achieving less than 4F2 

eff ective footprint. Commercial NOR fl ash memories are a 

viable candidate for in-memory analog computing in the near 

term due to the maturity and accessibility of such technology, 

while 3D NAND fl ash memories present intriguing prospects 

due to their very high density. For example, recent work shows 

that inference accelerators based on commercial embedded 

NOR fl ash memories, redesigned for analog operation, may 

dramatically increase the performance and energy effi  ciency 

of neuromorphic systems40, while modeling shows prospects of 

reaching fJ/op operation at the chip level41.

The Landauer’s limit defi nes minimum energy for computation 

as kT times the change in information entropy due to the 

computation, irrespective of the type of device. (Here k is a 

Boltzmann constant, and T is the temperature in Kelvin)42. 

Landauer’s principle is widely understood as an endpoint for 

digital scaling but hasn’t been applied to analog computers.
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Figure 1.20: Resistive crossbar as an example of computing in memory crossbar computation for electronic vector matrix multiply 
(courtesy of Matthew Marinella, Sandia National Laboratories43)
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Analog and Mixed-Signal Architectures

Purely analog computing is possible for some systems and 

would be desirable to achieve the best speed and energy 

effi  ciency. One example of such a system is in-sensor computing 

with image sensors feeding densely interconnected deep 

multilayer perceptron networks. However, many neural 

networks and machine learning models rely on weight reuse. 

In a weight-stationary (i.e., in-memory) computing, weight 

reuse implies either a less effi  cient approach of providing 

many copies of the same weight or more compact temporal 

multiplexing of one copy of the weight. The latter requires 

storing intermediate results after applying the same set of 

weights to diff erent portions of the input. Because digital 

circuits are more suitable for implementing intermediate 

memory, mixed-signal circuits are used for general purpose 

neuromorphic accelerators. The need for mixed-signal 

architectures is also driven due to less common tasks in 

machine learning/neuromorphic computing, which cannot be 

effi  ciently implemented in the analog domain.

Several architectures have been developed and optimized 

for a broad class of ANNs, including CNNs. Examples are the 

Programmable Ultra-effi  cient Memristor-based Accelerator 

(PUMA)44 and the aCortex40. In such architectures, memristor 

crossbars perform matrix-vector multiplication and are 

connected via ADC/DAC to digital circuits used to implement 

other operations, instruction decoder, and instruction 

memory. The tunability of nonvolatile memories allows 

reducing the overhead of process variations in analog circuits. 

ADC/DAC overhead can be avoided with parallel transport of 

duration vectors in time-domain architectures36. An algorithm/

HW co-design is used to achieve better physical performance 

at the same functional performance per system-level task.

The main challenge for inference and training applications 

is variations in memory cell I-V characteristics. However, 

the requirements are more relaxed for inference due to the 

utilized feedback tuning algorithms. Additionally, there is 

a need to reduce write and read currents for memristors 

(RRAM) and PCRAMs. This would allow lowering the area and 

energy overhead of peripheral circuits and access transistor 

overhead for 1T1R arrays. Prior work showed that most 

neural network inference operations could be performed 

with 4- to 8-bit weight/activation precision. The other 

important memory device metrics for inference applications 

are density, especially for energy effi  ciency (EE)-optimized 

designs, multi-level memory, and high retention. For most 

inference applications, the weights would be changed 

infrequently and remain stable over an extended period.

The computing precision requirements are much higher 

for training. Additionally, a highly linear and gradual 

conductance update rate and high endurance are required for 

training applications. However, the retention characteristics are 

much more relaxed since the weights are updated frequently. 

A further challenge is in debugging of issues caused by in-situ 

training. This may require knowledge of the fi nal value of the 

weights and full evolution of the system throughout the entire 

lifetime to fully understand how and why a particular system 

instance “learned” to do something unexpected or undesired.

Prior work on mixed-signal neuromorphic inference 

accelerators showed that system-level performance in EE-

optimized designs is mainly limited by memory density. The 

high area overhead of ADC/DAC can be reduced by sharing 

and time-multiplexing these circuits, resulting in better EE at 

the cost of lowering computational throughput. This leads 

to a natural tradeoff  between computational throughput 
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Figure 1.21: Comparison of mixed-signal and digital accelerators (courtesy of Dmitri Strukov, UC Santa Barbara45)
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and energy effi  ciency (Figure 1.21). Digital accelerators are 

better suited for high-precision applications, while mixed-

signal accelerators are adequate for low to medium levels of 

precisions. The gap between mixed-signal and purely digital 

accelerators is less when there is a signifi cant amount of 

weight reuse since the high cost of retrieving each weight can 

be amortized across many computations in digital architecture.

Neuromorphic inference accelerators could be the fi rst target 

for analog in-memory computing due to their signifi cance (see, 

e.g., expected number of operations performed per second 

for inference applications in Figure 1.19) and simpler memory 

device requirements.

FPAAs, Neuromorphic ADCs, and Stochastic 
Analog Computing Circuits

Large-scale fi eld-programmable analog arrays (FPAA) consist 

of programmable and confi gurable analog and digital 

components46 (Figure 1.22). These are made possible by 

fl oating-gate transistor circuits38,47. FPAA will be able to aid 

in the growth and development of neuromorphic computing 

at the edge. For example, FPAAs have already been used to 

implement the ultra-low-power sensor-to-end-result speech 

classifi cation50. Another exciting application of FPAAs is in 

solving diff erential equations by constructing analog circuits 

with matching underlying dynamics48. 

Analog to digital converters (ADCs) are an essential component 

in mixed-signal circuits (Figure 1.23). ADCs need to be fast, 

reliable, and capable of rapid gain-scaling in the edge systems 

while also being both low power and low cost. The main 

advantages of making trainable neuromorphic ADC is that 

they are generic and fl exible—logarithmic ADCs are an 

excellent example. These are suitable for optimization, have 

an excellent fi gure of merit, and can self-calibrate based on the 

application.  Additionally, training can compensate for the non-

linear characteristic though monotonicity is still required.

One of the defi ning characteristics of analog computing is 

noise. While noise is typically detrimental for analog circuit 

performance, it can be utilized in some applications.  An 

excellent example is a combinatorial optimization which is used in 

power grid applications, electronic design automation, logistics, 

and molecular dynamic simulations. A promising approach for 

solving optimization problems is to use generalized Hopfi eld 

neural networks. With adequately selected synaptic weights, 

such network converges (in the ideal case) to its minimum 

energy state, which corresponds to the solution of the 

programmed optimization problem. Annealing techniques 

are commonly used to escape local minima and improve 

performance, e.g., by probabilistically updating neuron 

states. Therefore, the effi  cient hardware for the generalized 

Hopfi eld network should effi  ciently implement not only VMM 

operation but also stochastic neurons to support metaheuristic 

techniques. Mixed-signal circuits based on analog-grade 

nonvolatile memories that utilize noise have been proposed to 

implement such stochastic functionality 49.
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Figure 1.22: Example of FPAA system: General architecture, chip layout in 350-nm process and analog and digital block architecture (adapted from50) 
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Key Areas of Focus and Follow-on Research

Analog-based Machine Learning (ML) architectures: There 

is a tremendous amount of research on AI and ML based 

on digital processors, including CPU, GPU and TPU (tensor 

processing unit). The need for more energy-effi  cient ML 

and inference at the node and edge requires innovation 

to facilitate Sensing to Action or true distributed edge 

intelligence. Analog holds promise to provide parallel matrix 

processing effi  ciently, depending on application. Research 

is needed to explore various analog-based ML architectures 

that include storage and work collaboratively with digital 

systems for a total solution. Examples include:

• Compute in memory with ADC/DAC

• Analog summing with comparator sensing

• Spike processing—neural model

• Resistive arrays or capacitive summing

• Understanding optimal partitioning between analog and 

digital domains for specifi c applications 

Analog element study and optimization: The above-mentioned 

architectures will require some type of analog device or 

element for processing. There are many which can be explored, 

but there is need to identify a “few good solutions” to allow 

architecture optimization. Elements could include:

• Analog fl oating gate

• RRAM with multi-level capabilities. The particular goal is 

lowering variations in I-V characteristics and reducing write 

and read current of memory cells

• SRAM with multi-level capabilities

• Other NVM with multi-level capabilities which can store, 

sum, and integrate results

Algorithms for analog AI and ML: Analog ML will bring 

in non-ideal eff ects, including noise, non-linearity, gain 

variations, and process variations. Algorithms will be needed 

which cannot only operate eff ectively in this environment 

but possibly take advantage of them, such as stochastic or 

“noisy” signals that facilitate optimization or non-linearity 

that extends dynamic range. Research already indicates that 

learning systems can tolerate lower-bit resolution.

Co-design across devices, circuits, and algorithms will be 

needed to address device and circuit nonidealities. It is a 

recurring theme within this section and is highlighted in the 

Basic Research Needs for Microelectronics report published 

by the Department of Energy Offi  ce of Science Workshop in 

20181. To develop better analog compute devices for edge 

machine learning, we need to look at specifi c computing 

workloads and understand their bottlenecks.
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Figure 1.23: Resolution v sampling rate of ADC (courtesy of Shahar Kvatinsky, Technion51)
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1.6 Analog Design Productivity and Predictability

Overview and Needs

Integrated circuit (IC) design has benefi ted tremendously 

over the past half-century from design automation. Today’s 

multi-billion transistor ICs are possible because of increasingly 

higher levels of abstraction (transistors to gates to blocks 

to cores) and the rise of reusable IP (intellectual property) 

block providers that enable design to be done at the “system” 

level. Additionally, massive investment in the development of 

algorithms and computer-aided design (CAD) tools to accelerate 

and automate the IC design process, as well as a tremendous 

increase in the available compute power that underlies today’s 

electronic IC design fl ow, have driven the industry forward. The 

capability and complexity of CAD tools continue to increase, 

but so does the complexity of IC manufacturing technologies, 

especially the restrictions (design rules) on layout. This leads 

to a “design gap” between what is possible in a technology 

and what can be designed in a reasonable time, while still 

meeting stringent high-volume manufacturing requirements.

However, the aforementioned improvements in design 

capability and productivity have overwhelmingly benefi tted 

digital design, not analog/mixed-signal (AMS) design. The 

time-honored AMS design fl ow of schematic (circuit) design, 

then physical (layout) design, then verifi cation, then test is 

still largely intact today. Yet it’s being challenged at 7nm 

and below as layout-dependent eff ects (LDEs) and parasitics 

dominate the inherent device performance52. There have 

been signifi cant improvements in all aspects of that fl ow. For 

example, since parasitics and LDEs can have such an impact 

on transistor performance in modern technologies, coupling 

schematic and layout design with extracted views is a must. 

Automating aspects of AMS layout and the increase in available 

compute power have benefi tted AMS just as much as they have 

digital, but there have been no breakthroughs in abstraction 

and effi  ciency comparable to those on the digital side. AMS 

blocks are almost always the limiting factor in design of 

complex mixed-signal ICs. With only slight exaggeration, the 

digital portion is expected to be synthesized and work right 

the fi rst time, whereas multiple designs for an AMS block 

may be attempted, knowing some will not meet required 

performance/cost/power and will have to be discarded. 

Depending upon the required performance, even the “good” 

designs can require several iterations in test shuttles to meet 

requirements. RF/AMS design is inherently an optimization of 

a multivariable space where the designer is eff ectively working 

with n equations and m unknowns, where m » n due in part to 

complexity, model limitations, integration eff ects, etc.

AMS design time and cost, including test, is therefore a 

limiting factor in the development of modern mixed-signal 

ICs and even large mostly digital SOCs, because the latter 

always include signifi cant amounts of AMS IP. This will be 

a key limiting factor with the high growth in applications 

of semiconductors in IoT and many other areas that may 

require more unique solutions. The semiconductor industry 

would benefi t greatly from improved AMS design productivity 

and predictability. SRC thought leadership is designed to 

address that need over the next decade.

Background

AMS block/product development includes the major phases 

of design (both schematic and physical), verifi cation, and 

test. Manufacturability constraints, parasitics, LDEs, and 

variability have all signifi cantly increased the complexity of 

digital design, as manufacturing technologies have scaled. 

In addition to those hurdles, AMS design must overcome 

constraints from lowered supply voltages and less “AMS-

friendly” transistor characteristics that can make yesterday’s 

standard AMS techniques obsolete. Digital design has 

benefi tted from abstraction, synthesis, automated regression 

testing, DFT (Design for Test), BIST (Built-In Self-Test), etc., 

but is still challenging. AMS has benefi tted from improved 

models, SPICE capabilities, and some layout automation. 

But it has not fundamentally changed and is still the “long 

pole in the tent.” Compared to digital design, AMS circuit 

design disproportionately requires resources, stretches 

schedules, causes test issues, results in more fi eld failures, 

and fails to meet specifi cations. 

AMS circuit analysis and design often use textbook models 

and simplifi ed conceptions of how transistors operate. This 

framework can be useful as a basis for conceptualizing new 

and innovative circuits but is not suffi  cient to verify that 

the new ideas will actually work in practice53. “Back of the 

envelope” calculations cannot be trusted, and even the 

operating point information printed by a model/simulator 

is only a rough approximation of the terminal-to-terminal 

metrics for a transistor. Any assistance or automation of the 

AMS design process must be based on the actual simulation 

models for the technology. The “actual” simulation must 

encompass composite devices, and in advanced technologies, 

long AMS transistors are often not allowed and must be 

made by “stacking” multiple shorter transistors in series46. 

Getting appropriate design information for such devices is not 

possible from operating point information but is available from 
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simulations of the composite stacked transistor. Additionally, 

as frequencies push into the THz regime discussed in section 

1.3, extracted and accurately modeled interconnect and 

parasitic impact is critical to predict performance. Techniques 

need to go beyond existing resistance and capacitance toward 

RLC and transmission line models.

Verifi cation and test are additional bottlenecks for AMS/

mixed-signal (AMS) design54. SPICE-like transient simulations 

are impossible to use for full SoC system-level verifi cation. 

As a result, quality/reliability of RF and AMS blocks/circuits is 

10X worse than their digital counterparts, and test coverage 

is poor. This is fundamentally due to the fact that there is no 

measurement of a test’s defect coverage nor latent defect 

activation. Eff orts are underway in IEEE P2427 to develop 

standards for defect modeling and coverage55. Behavioral 

block models and “real number” abstractions of AMS blocks 

are examples of techniques that can greatly speed up system 

verifi cation65. Similarly, IEEE P1687.2 is being developed to 

defi ne AMS test access standards. Automated DFT, BIST, and 

test generation for AMS have had some success but is nowhere 

near as advanced as for digital. Substantial improvements 

in EDA tools and techniques for test coverage are essential, 

particularly for mission-critical applications like automotive 

functional safety where failures are not acceptable.

Many factors contribute to the performance and profi tability 

of ICs: design eff ort, die area, supply current, test, and yield. 

A framework for AMS design to maximize profi tability based 

on optimizing those disparate factors could revolutionize 

the industry. Automation of design (including AMS BIST) that 

did not squeeze out every mm2 of area but got a functional 

block out with reduced design eff ort and time, could see faster 

time to market, increased sales, and ROI for lower volume parts.

Many attempts to automate—or at least improve—AMS 

design have been proposed over the past three decades. 

There were initial attempts at “AMS synthesis”, that tried 

to follow the success of the abstraction of transistors to 

standard cells (circuit blocks) and the development of 

languages/algorithms/tools that automatically took a high-

level defi nition of a block and implemented it in those 

standard cells. Because AMS embodies a large variety of 

circuits with completely diff erent functions and fi gures of 

merit, the synthesis proposals often were limited to one 

circuit or a small class of circuits, although some were more 

general. Most were from universities, and some led to spinoff  

companies to try to commercialize the university research. 

Unfortunately, none entered mainstream use and moved AMS 

design up the food chain.

The more modest goal of “AMS optimization” was tried after 

full-blown synthesis failed to materialize. Often the same 

circuit block needs to be “reused” in a diff erent product or 

“ported” to a diff erent technology. However, there is almost 

never “exact” reuse: product specifi cations may be diff erent, 

so the block has to be tweaked; the supply voltage levels 

may be diff erent; or the device palette in a new technology is 

diff erent, so design parameters may need to be adjusted to 

account for diff erent transistor characteristics. Still, knowing 

the key design parameters (width and/or length of important 

transistors, values for specifi c capacitors or resistors, etc.) and 

key design performances, it would seem to be a simple task 

to wrap one of the many available optimization algorithms or 

codes around this problem and automate reuse and porting 

of the circuit block. Multiple algorithms/tools have been 

proposed for this, but again none has entered mainstream 

use. There are many reasons this has not been successful: an 

automated tool may fi nd an “optimal” design that violates 

some unspecifi ed requirement (e.g., noise margin, known 

historical sensitivity to process or temperature variation, 

etc.) that a designer just “knows” and automatically takes 

into account when designing; documenting in detail what the 

key parameters and performances for a circuit block are can 

take signifi cant time; and a designer typically gets little or no 

recognition/reward for this if the block is used by someone 

else. Furthermore, a diff erent specifi cation/technology may 

completely preclude a given topology being used, for instance, 

if supply voltage decrease precludes the use of cascoding.
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Parasitics and LDEs are so important for today’s devices and 

technologies that schematic and physical design cannot be 

decoupled. Improvements in AMS design productivity will 

have to encompass both aspects. The historical approach to 

AMS design synthesis/optimization of adjusting transistor 

geometry and biasing will not work. This is exemplifi ed by 

the UC Berkeley BAG2 approach56, which encapsulates design 

methodology/knowledge in customized software scripts that sit 

“on top” of both schematic and layout views. As digital design 

has shown, an additional advantage of this approach is that 

it is script-based rather than GUI-based, which inherently 

increases design productivity and enables automated 

regression testing.

Improving AMS design reuse—or even moving up the food 

chain to AMS synthesis—by necessity trades simulation time 

for designer time. Simulation and verifi cation test benches 

need to be reusable and should link to BIST and production 

test development and automation. Detailed verifi cation 

of AMS blocks themselves needs to be done at the SPICE 

level. But for verifi cation with associated digital circuitry, 

or at a higher level, it is infeasible to simulate SPICE-level 

using “AMS-accurate” models. Being able to use much faster 

“digital-accurate” models in SPICE for digital blocks would 

be of great benefi t. Although it has been proposed in the 

past, it has never become a reality. Behavioral models 

are of signifi cant benefi t, but developing them can be a 

bottleneck. While there have been attempts in academia and 

industry, automated creation and verifi cation of behavioral 

models is in its infancy, yet it is essential for practical 

simulation time.

Another possible roadblock to adoption of automation 

of AMS design is mindset. Many AMS designers have years 

or decades of experience and knowledge, look down on 

coding as an inferior intellectual task (that is not as true with 

today’s graduates), and may even think of automation as a 

threat to their jobs.

Targets

AMS design is still an art backed heavily by science. And 

hardcore AMS designers believe this is extremely unlikely 

to change. With roughly 60 years of evidence to support 

their argument, including many failed attempts to prove 

otherwise, is there a middle ground? At the very least, if the 

“inspirational” aspect of AMS design cannot be automated, 

improvements in the non-value-added “grunt” aspects of AMS 

design would be of great benefi t and would free up precious 

“expert designer” resources to concentrate on the aspects of 

AMS design that cannot, for now, be automated.

Defi ning design productivity has always been an elusive, 

daunting task. With no clear baseline, it becomes 

extraordinarily diffi  cult to quantitatively measure 

productivity. However, there are improvements that, when 

made, obviously and undeniably improve productivity. In 

many cases, they make the impossible possible. Perhaps 

design predictability is easier to measure, but in the AMS 

world there are many variables impacting the result. This is 

primarily dictated by the complexity of the end application 

and the associated requirements for AMS circuits, and by the 

ability to model (or not) all parasitics, particularly complex 

LDEs and substrate coupling in high frequency circuits. While 

some circuits will have an inherent predictability advantage 

due to their relative simplicity, predictability can be measured, 

nonetheless. Test complexity and the resulting test time also 

continue to grow, so cost is also increasing. New paradigms are 

needed that are more akin to DFT for digital circuits. Here, the 

target needs to be written around the cost of test as compared 

to the cost of manufacturing the die. Quality and reliability 

have standard measures, and AMS circuits signifi cantly trail 

their digital counterparts in these metrics. But targets can be 

set, and the AMS community should strive to meet them as 

more and more applications, such as autonomous vehicles, 

are becoming mission critical. Lastly, built-in inherent security, 

methods of measurement, and metrics are beyond the scope of 

this chapter but are addressed in Chapter 4. The following list 

defi nes targets to be met by 2030.

• Simulation speed improvement of > 100x compared to 

a standard suite of circuits (see suggested set in call for 

proposals), particularly data converters and PLLs due to 

a combination of enhanced algorithms, ongoing compute 

hardware improvements, improvements in statistical 

analysis, and simplifi cation of the method of simulation

• Model improvements compared to a standard suite of 

circuits (see suggested set in call for proposals) accurate to 

within 1% over all process corners and statistical variations, 

such that when combined with the best simulators ensure 

all design specifi cations or parametric yield targets are met

• Early estimates, perhaps ML-based from schematic 

entry, accurate to within 10%

• Demonstrated business benefi t for reuse/semi-automation 

(see Appendix B)

• Component margin dollars exceed development 

cost by 10X, despite a likely larger die size due to the 

ineffi  ciencies in semi-automated design approaches 

• Meets comparable performance as verifi ed through 

simulation and modeling of handcrafted design
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• Introduction of a commercial tool that is as commonly 

used as SPICE that provides reuse through repetition, 

parameterization, parameter/feature extension, and/or 

portability, freeing the AMS designer from the mundane 

elements of design and allowing him/her to concentrate on 

the creative elements

• Test coverage of defects > 90%; performance correct by design

• Continuous self-test for identifi cation of part wear-out and 

alert due to TDDB, HCI, NBTI, etc. 

• Defective parts per million (DPPM) for AMS designs < 0.1 

• Detailed study and exploration of AMS design 

methodology and fl ow; identify the key points or tasks that 

can best be automated or addressed with ML algorithms to 

free designers for creation of new innovative solutions

Key Areas of Focus and Follow-on Research

Research should address achievement Targets defi ned above. 

While not an exclusive list, some proposal topics are:

• Circuit techniques that used to work at 65 nm, where 

a considerable amount of AMS design has been 

implemented, no longer apply. Access to small geometry 

nodes (10 nm and smaller) is a fundamental requirement to 

validate models and simulation of the latest AMS circuits. 

Yet, as it stands today, this access is extremely limited to 

academia. Proposals to resolve this dilemma are needed.

• Defi nition of a benchmark suite of AMS circuits to measure 

simulation and modeling improvements against consisting 

of simple (diff erential pairs, bandgap regulators, etc.), 

medium complexity (op amps, fi lters, LNAs, mixers, etc.) 

and very complex (continuous time ∑∆ A/D converters, PLLs, 

etc.) circuits.

• Defi nition of a benchmark suite of AMS circuits with 

estimates of engineering eff ort in full-time engineer (FTE) 

equivalents to support analysis/comparison of reuse/semi-

automation approaches.

• Reuse/semi-automation tools to improve designer 

productivity and/or circuit predictability.

• New simulation algorithms providing improvements in 

accuracy and/or throughput.

• DFT techniques for random AMS circuitry.

• Automated insertion for AMS circuitry.

• Methods to measure AMS defect coverage with acceptable 

accuracy in acceptable time.

• ML-based approaches to optimize design and/or layout.

• ML-based approaches to identify outliers during test to 

eliminate defects from escaping to the fi eld.

1.7. Summary—New Trajectories 
for Analog Electronics
Overview

Analog electronics are key to interfacing and processing real-

world conditions and providing means to convert the sensed 

conditions to real-world actions. Fundamentals of analog 

impact all electronics, including communications, storage, and 

computation, which are covered in subsequent chapters of 

this report. There are opportunities for analog innovation in 

all these areas, as well as power management and conversion, 

with focused research addressing key challenges identifi ed 

above. With the exponentially increasing data from analog 

sensing, there is need to reduce the raw data to usable and 

actionable information. This will alleviate the load on storage 

and communications, as well as provide local, timely, energy-

effi  cient, and secure automation.

The Analog Grand Goal is for revolutionary technologies to 

increase actionable information with less energy, enabling 

effi  cient and timely (low latency) sensing-to-analog-to-

information with a practical reduction ration of 105:1.

Research Recommendations Summary

• Study of holistic solutions with key applications knowledge 

with focus on minimal processing to take action

• Collaborative multi-expertise research projects 

demonstrator platform(s)

• Heterogeneous integration to make best use of best 

technology in an energy-, size-, and cost-effi  cient manner

• CMOS platform integration —optimized technologies

• Package platform integration—multi-technology/multi-

die from DC to THz

• Optimum power management (including control) and 

conversion for effi  cient and fast response energy control  

• Leverage human systems as a model for bioinspired, local 

“sensing to action” including effi  cient machine learning and 

inference at the edge

• Analog-based ML architectures (compute in memory, 

synapse, etc.)

• Architectures and algorithms that leverage analog 

approach and compensate or take advantage of analog 

non-idealities

• Flexible, scalable platform and technology, including sensors, 

memory, and signal representation matched to domain
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• Analog building blocks optimized for application and good 

enough with integrated signal processing

• Effi  cient array-based signal processing, including multi-

sensor/multi-model fusion

• THz sensing and communications arrays are of 

signifi cant challenge

• Accurate, low-noise and tightly synchronized timing 

solutions/clocks (broadly applies)

• New devices for analog ML, THz operation, and power 

conversion

• New analog elements for simultaneous computation 

and storage

• Silicon Photonics for signal distribution, processing, 

and sensing

• Methodologies and models to improve analog and mixed-

signal simulation >100x without loss of good-enough 

accuracy for the application

• Design methodology and supporting tools to facilitate 

reuse of “knowledge” and improve analog design 

productivity by 10-100X

• Identify key areas/tasks that can best be automated 

or addressed via ML algorithms to free designers for 

creation of new innovative solutions

• Design for test and test methodologies for >90% analog 

defect coverage for predictable quality 

• Models which more accurately predict analog performance 

prior to silicon covering precision, and THz frequencies over 

thermal, stress, and aging

• Include non-ideal eff ects of physics and parasitics (on-

chip and in-package)

• Include statistical variations to address parametric shifts 

leading to eff ective “defect”

• Methodology and infrastructure to provide heterogeneous 

technology (fab) access to researchers to validate designs 

in industry current and advanced technologies

Appendix A: Total analog 
information from the physical world

Information always requires physical carriers 

that are material (quasi) particles (e.g., 

photons, phonons, electrons, etc.) transferring 

energy rather than thermal noise. Energy is 

a prerequisite for any information event. In 

Earth environment, the main source of energy 

is Sun. The total amount of information 

available on Earth can be estimated using the 

number of photons that are refl ected from 

the surface of Earth, and thus collectable by a 

receiver (e.g. human eye).

The total solar radiation refl ected by earth 

surface Etot= 7••1015 J/s (Figure A1). In a fi rst-

order approximation, we assume that all 

this radiation consists of green photons with 

wavelength λ=550nm. The corresponding 

energy of one photon is:

Eph 3.6••10-19=
hc

λ
= J=2.3 eV~100k8T

~1034 photons/s
3.6••10-19

7••1015

Nph =
Etot

Eph

=

Therefore, the number of equivalent 

photons per second that can act as 

information carriers is:

Appendix
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Figure A1: Energy breakdown of incident electromagnetic radiation from the Sun

Figure A2: Human sensory system of data acquisition via sensors

Table A1: Information acquisition rates of senses and processing57:

Sensory System Bits per second Processed by the brain (bits/s)

Eyes 10,000,000 40

Ears 100,000 5

Smell 100,000 1

Taste 1,000 1
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Based on Table A1 the maximal individual human sensory 

throughput is ~107 bit/s. For the total human population of 

~7.5 billion, the collective human sensory throughput —

~1017 bit/s. While the individual human sensory throughput 

is ~10 Mbs, the ‘conscious bitrate’ is <50 bps, thus the 

compression ratio of >200 000:1.

A3 Global rate of data acquisition via sensors

Janusz Bryzek, CEO of eXo Systems, Inc. and chair of the 

TSensor Summit, Inc. compiled an inventory of the total 

number of sensors installed in the world, based on 10 

diff erent sources and estimated that this number was 

approximately 1 trillion (1012) in 2018 and will increase to 45 

trillion (4.5x1013) by 203258,59. The corresponding collective 

data acquisition rate in 2032 is projected to be 1027 bytes-per-

year59, which is equivalent to ~1020 bits/s. 

Based on the reported numbers of sensors, one can also 

estimate the total data acquisition rate by sensors. According 

to 60, image sensors constituted ~30% of the global sensor 

market in 2018. 

The data acquisition rate of image sensors can be estimated 

based on the following assumptions:

• VGA Standard resolution 640x480=3.07x105 pixels/frame

• 1 frame-per-second acquisition

• 8 bits/pixel (Black and White Video)

This gives acquisition rate of 2.46x106 bits/s per image 

sensor. All other common sensors such as fl ow, level, 

pressure, temperature, chemical, position, etc., have low-data 

acquisition rates, e.g., 8–16 bits/s. Since this is much lower 

than the image sensors, all other sensors can be excluded 

from this simplifi ed estimate without signifi cant eff ect on 

accuracy. Thus, a numerical example for 2018 and 2032 yields:

• Total sensors:

1012 (2018) and 4.5x1013 (2032)69,70

• Total sensory throughput:

7.37x1017 bit/s (2018) and 1.11x1020 bit/s (2032)

The data points for total sensory throughput in Figure 1.10 

in this chapter were obtained using projections for the 

total number of sensors58,59 (averaged among all sources of 

data) multiplied by the acquisition rate of image sensors as 

estimated above.  

Appendix B: Proposed fi gures of merit

Any tool developed for reuse or semi-automation will reduce 

development cost and almost certainly come at an increased 

die area penalty. Of course, it could provide other benefi ts for 

the new AMS designer, such as higher reliability, higher circuit 

yield in the face of wafer fab parametrics, faster time to 

market, etc.—but the guru would not likely agree. However, 

can this tradeoff  analysis be simplifi ed to compare the 

decrease (increase) in die cost versus the increase (decrease) 

in development cost for the optimized case (partially 

machine-generated case)?

A good product will produce 10X the development cost in 

margin dollars. The market sets price, so an increase in die 

cost will decrease margin dollars. Unless this die cost is off set 

by some other factor, such as a reduction in test cost, it can 

only be countered by increased product sales. A reasonable 

assumption is that end of life for a product, whether hand-

optimized or partially machine-generated, is the same. 

However, it is reasonable to assume that the partially 

machine-generated product gets to the market sooner and 

that time diff erence will result in incremental margin dollars.

Reuse and semi-automated approaches lead to an increase 

in die area (A). An increase in A will reduce yield (Y), due 

to defects and to the reduction in Possible Die Per Wafer 

(PDPW). The change in Y due to a change in A for Seeds’ Law 

is δY/δA = - D/(1+AD)2 where D = Defect Density. This impact 

for D < .25 d/cm^2 (achievable with today’s manufacturing 

capability) can be shown to be negligible compared to the 

reduction in PDPW that reduces linearly with increase in 

A. For complex AMS circuits and/or processes, die yield 

is often limited by parametrics, which are not always a 

straightforward function of defect density (e.g., soft errors 

shifting parametrics, versus hard functional errors). In this 

case, for those blocks or elements that would be considered 

for reuse/semi-automation, the parametric yield is to a fi rst 

order independent of the design approach (i.e., machine-

generated solutions need to be comparable to handcrafted 

solutions to be eff ective), and the PDPW is limited simply by 

the change in area. Thus, for a 1% increase in A, there is a 1% 

decrease in PDPW and a 1% increase in die cost. Note that 

M$ = P – C where M$ = Margin dollars, P = Price and C = Cost. 

Therefore, a 1% increase in cost will be a > 1% decrease in 

Margin dollars.

On the other hand, reuse and semi-automated approaches 

provide a reduction in development cost and time. To a 

fi rst order, the development time and cost of the machine-

generated circuit/block approaches zero. Development cost 

of an optimized circuit/block will need to be estimated as the 

product of the number of Full Time Engineers (FTEs) and an 

engineer’s loaded cost.
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To quantify the crossover point for where reuse/semi-

automation is a business benefi t, consider the following:

N0 =  Number of parts sold if a hand-optimized AMS guru 

completed the design

NN =  Additional units sold if a performance equivalent part 

made it to the market sooner

P =  Price the units are sold at, independent of time

C0 = Cost of hand-optimized AMS-guru-completed design

CN = Cost of partially reused or semi-automated design

ΔC = CN– C0

DC0 =  Development cost of hand-optimized AMS-guru-

completed design

DCN =  Development cost of partially reused or semi-

automated design

ΔDC = DC0– DCN

In order to satisfy the requirement that the margin dollars 

exceed 10 times the development cost:

(N0 + NN) * (P - CN) > 10 * DCN which can be rewritten as

N0 * (P - C0) – 10 * DC0+ NN * (P - CN) > N0 * ΔC - 10 * ΔDC  
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and for the case where N0 * (P - C0) = 10 * DC0 (i.e., the original 

design was a good product) then

NN * (P - CN) +10 * ΔDC > N0 * ΔC  

Stating this in words, the margin dollars from the incremental 

sales plus the savings in development cost must off set the 

incremental cost applied to all the original unit sales.  

This is perhaps an oversimplifi ed analysis due to other 

considerations such as:

1. In addition to development cost, an amortized amount for 

creating and maintaining the IP should be included.

2. Time value of money is not considered.

3. Price and cost will vary with time and volume, and that is 

not considered.

4. The potential time saved, which impacts time to market 

plus availability of the designer to move on to additional 

new products though this, is diffi  cult to quantify.

But it is directionally correct, relies on some estimations 

whose accuracy likely overwhelms the factors not considered 

above, and gives the developer a strong guideline to ensure 

his/her approach will be a commercially viable solution rather 

than technology for technology’s sake.

TrendChallengeGrand Challenge Promising Technology 39



References to Chapter 1
1 Basic Research Needs for Microelectronics. US Department of Energy report 2018, https://science.osti.gov/-/media/bes/pdf/reports/2019/
BRN_Microelectronics_rpt.pdf

2 Gabriele Manganaro. “Analog 10 Years from Now” Presented at SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden 
Research Center, San Jose CA USA Dec. 2019

3 Peter Kinget. “The World is Analog - Future Challenges”, SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research 
Center, San Jose, CA, USA, Dec. 12-13, 2019

4 Behrooz Abdi. “Sensors and Actuators for the next decade”, SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research 
Center, San Jose, CA, USA, Dec. 12-13, 2019

5 D. Guermandi, et al “A 79-GHz 2x2 MIMO PMCW Radar SOC in 28nm CMOS,” IEEE Asian Solid-State Circuits Conference Nov. 2016

6 B. J. Baliga, "Power semiconductor device fi gure of merit for high-frequency applications," in IEEE Electron Device Letters, vol. 10, no. 10, pp. 
455-457, Oct. 1989.

7 A. Lidow et al.” Getting from 48 V to Load Voltage: Improving Low Voltage DC-DC Converter Performance with GaN Transistors” Presented at 
IEEE Applied Power Electronics Conference and Exposition (APEC) March 2016

8 H. Amano et al. “The 2018 GaN power electronics roadmap” J. Phys. D: Appl. Phys. 51 163001

9 Fritz Kub. “GaN Power Technology”, SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research Center, San Jose, CA, 
USA, Dec. 12-13, 2019

10 Michael Niemier. “Analog Circuits with Beyond CMOS Devices”, SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden 
Research Center, San Jose, CA, USA, Dec. 12-13, 2019

11 Ercsey-Ravasz, M., Toroczkai, Z. “Optimization hardness as transient chaos in an analog approach to constraint satisfaction”. Nature Phys 7, 
966–970 (2011).

12 Yin, et al., “Effi  cient Analog Circuits for Boolean Satisfi ability” IEEE Transactions on VLSI, 26(1), p. 155-167, 2018

13 Molnár, B., Molnár, F., Varga, M. et al. “A continuous-time MaxSAT solver with high analog performance”. Nature Communications 9, 4864 (2018)

14 F.Chen et al.,”Compressed Sensing Architecture for Data Compression in Wireless Sensors”, IEEE Journal of Solid-State Circuits, Vol.47, No3 
March 2012

15 Siram Vajapeyam, “Understanding Shannon’s Entropy metric” 24-March-2014 – Cornell University - arXiv:1405.2061 [cs.IT]

16 Jan Rabaey, “Sensing to Action: The nature of distributed intelligence”, Presented at SRC Workshop on New Trajectories for Analog 
Electronics, IBM Almaden Research Center, San Jose CA USA Dec. 2019

17 Chiao Liu, “Intelligent Vision Systems – Bringing Human-Machine Interface to AR/VR”, Presented at SRC Workshop on New Trajectories for 
Analog Electronics, IBM Almaden Research Center, San Jose CA USA Dec. 2019

18 Baher Haroun, “Intelligent Sensors:  Sensing to Action”, SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research 
Center, San Jose, CA, USA, Dec. 12-13, 2019

19 Michael P. Flynn, “Compressed Sensing for Analog Signals and Imaging”, SRC Workshop on New Trajectories for Analog Electronics, IBM 
Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019

20 Rashid Attar, “Ultra-Low Power Highly Integrated SoC for IoT”, Workshop on New Trajectories for Analog Electronics, IBM Almaden Research 
Center, San Jose, CA, USA, Dec. 12-13, 2019

21 Gert Cauwenberghs, “High-Density Neural Interfaces for Pervasive Human-Machine Interaction”, SRC Workshop on New Trajectories for Analog 
Electronics, IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019

22 Mark Rodwell. “HBT THz integrated circuits and applications” SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden 
Research Center, San Jose, CA, USA, Dec. 12-13, 2019

23 Q. Zhong et al., “CMOS Terahertz Receivers,” Proc. IEEE Custom Integrated Circuits Conf., San Diego, CA, Apr. 2018

24 Z. Ahmad et al., “Devices and Circuits in CMOS for THz Applications,” Proc. IEEE Int’l. Electron Device Meeting, Dec. 2016, San Francisco, CA, 
Paper 29.8, pp. 734–37.

25 Kenneth K. O. “CMOS Platform for THz”, Presented at SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research 
Center, San Jose, CA, USA, Dec. 12-13, 2019

26 D. Y. Kim, S. Park, R. Han and K. K. O, "820-GHz imaging array using diode-connected NMOS transistors in 130-nm CMOS," 2013 Symposium on 
VLSI Circuits, Kyoto, 2013, pp. C12-C13.

27 I.R. Medvedev et al., “Submillimeter Spectroscopy for Chemical Analysis with Absolute Specifi city,” Optics Letters, vol. 35, issue 10, 2010, pp. 
1533–35.

28 S. Kang, S. V. Thyagarajan, and A. M. Niknejad, “A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS,” IEEE J. Solid-State 
Circuits, vol. 50, no. 10, Oct. 2015, pp. 2256–67

29 Q. Zhong et al., “300-GHz CMOS QPSK Transmitter for 30-Gb/s Dielectric Waveguide Communication,” Proc. IEEE Custom Integrated Circuits 
Conf., Apr. 2018, San Diego, CA, paper 13-4

30 Brian Ginsburg. “Automotive and Industrial Radars”, SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research Center, 
San Jose, CA, USA, Dec. 12-13, 2019

TrendChallengeGrand Challenge Promising Technology40



31 Marcel Geurts. “Analog Beamforming Antennas”, SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research Center, 
San Jose, CA, USA, Dec. 12-13, 2019

32 Vladimir Stojanovic. “Integrated Silicon Photonics for Communication and Sensing” Presented at SRC Workshop on New Trajectories for Analog 
Electronics, IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019

33 Sun, C. et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circ. 50, 828–844 (2015)

34 B. Ulmann. "Why algorithms suck and analog computers are the future." https://blog.degruyter.com/algorithms-suck-analog-computers-future/ 
(accessed).

35 Source: NVidia presenter’s day, 2016, https://investor.nvidia.com/events-and-presentations/presentations/2016/default.aspx

36 Geoff rey W. Burr, "Materials for analog computing," SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research Center, 
San Jose, CA, USA, Dec. 12-13, 2019.

37 M. Bavandpour, S. Sahay, M.R. Mahmoodi, and D.B. Strukov, "Mixed-signal neuromorphic processors: Quo vadis?", in: Proc. IEEE S3S'19,  San 
Jose, CA, Oct. 2019, pp. 1-2

38 C. Diorio, P. Hasler, A. Minch, and C. A. Mead, “A single-transistor silicon synapse”, Transactions on Electron Devices, vol. 43, pp.1972-1980. Nov. 
1996.

39 J. Hasler, “Large-Scale Field Programmable Analog Arrays,'' IEEE Proceedings, 2020.

40 M. Bavandpour, M.R. Mahmoodi, H. Nili, F. Merrikh Bayat, M. Prezioso, A. Vincent, K.K. Likharev, and D.B. Strukov, "Mixed-signal neuromorphic 
inference accelerators: Recent results and future prospects", in: Proc. IEDM'18, San Francisco, CA, Dec. 2018, pp. 20.4.1-20.4.4

41 M.R. Mahmoodi and D.B. Strukov, "An ultra low energy internally analog, externally digital vector-matrix multiplier circuit based on NOR fl ash 
memory technology", in: Proc. DAC’18, San Francisco, CA, June 2018, art. 22.

42 R. Landauer, "Irreversibility and heat generation in the computing process," IBM J. Research and Development, vol. 5, pp. 183-191, 1961.

43 Matthew J. Marinella, "Neuromorphic computing with analog nonvolatile memory," SRC Workshop on New Trajectories for Analog Electronics, 
IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019.

44 Ankit, Aayush, et al. International Conference on Architectural Support for Programming Languages and Operating Systems. (2019).

45 Dmitri Strukov, "Neuromorphic inference accelerators as the best entry application for analog(mixed-signal) computing," Presented at SRC 
Workshop on New Trajectories for Analog Electronics, IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019.

46 J. Hasler, “Large-Scale Field Programmable Analog Arrays,'' IEEE Proceedings, 2020.

47 Jennifer Hasler, "Machine learning at the edge: Analog neural systems ICs," SRC Workshop on New Trajectories for Analog Electronics, IBM 
Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019.

48 J. Hasler, “Starting Framework for Analog Numerical Analysis for Energy Effi  cient Computing,” Journal of Low Power Electronics Applications, 
vol. 7, no. 17, June 2017.  pp. 1-22.

49 John Paul Strachan, "Perspective on designing and demonstrating hybrid analog-digital hardware," SRC Workshop on New Trajectories for 
Analog Electronics, IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019.

50 S. George S. Kim, S. Shah, J. Hasler, M. Collins, F. Adil, R. Wunderlich, S. Nease, and S. Ramakrishnan, “A programmable and confi gurable mixed-
mode FPAA SoC”, TVLSI, vol. 24 (6), pp. 2253-2261, 2016.

51 Shahar Kvatinsky, "Analog in ML some thoughts," SRC Workshop on New Trajectories for Analog Electronics, IBM Almaden Research Center, 
San Jose, CA, USA, Dec. 12-13, 2019.

52 Seyfi  Bazarjani, "AMS Challenges in 7FF and Beyond," SRC Decadal Plan Workshop on New Trajectories for Analog Electronics, IBM Almaden 
Research Center, San Jose, CA, USA, Dec. 12-13, 2019.

53 Colin McAndrew, "Better Leveraging Models: Why They Should be Used Backward and Where They Must be Improved," SRC Decadal Plan 
Workshop on New Trajectories for Analog Electronics, IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019.

54 Arturo Salz, " Analog/Mixed-Signal Emulation Technology Innovation," SRC Decadal Plan Workshop on New Trajectories for Analog Electronics, 
IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019.

55 Stephen Sunter, " Emerging Standards for A/MS Design-For-Test and Test Generation Productivity," SRC Decadal Plan Workshop on New 
Trajectories for Analog Electronics, IBM Almaden Research Center, San Jose, CA, USA, Dec. 12-13, 2019

56 E. Chang et al., "BAG2: A process-portable framework for generator-based AMS circuit design," 2018 IEEE Custom Integrated Circuits 
Conference (CICC), San Diego, CA, 2018.

57 M. Zimmermann, The Nervous System in the context of Information Technology, in: Human Physiology, Robert F. Schmidt, and Gerhrad Thews 
(eds.), Springer-Verlag Berlin Heidelberg 1989/

58 Janusz Bryzek, “The Trillion Sensors (TSensors) Foundation for the IoT”, https://www.iot-inc.com/wp-content/uploads/2015/11/2-Janusz.pdf

59 Stephen Whalley, “TSensors and Exponential Abundance”, APS Actualization of the Internet of Things Conference, April 17-19, 2017, Monterey, 
CA, https://www.aps.org/units/fi ap/meetings/conference/upload/2-1-Whalley-Trillion-sensors.pdf

60 BCC Research report https://www.bccresearch.com/pressroom/ias/global-market-sensors-reach-nearly-$154.4-billion-2020

TrendChallengeGrand Challenge Promising Technology 41



New Trajectories for Memory 
and Storage

Chapter 2

Seismic shift #2
The growth of memory demands will outstrip global 

silicon supply, presenting opportunities for radically new 

memory and storage solutions.

Radical new solutions in memory and storage technologies will 

be needed for future ICT with major innovations in devices, 

circuits and architectures. By end of this decade, the continuing 

improvements in ICT energy effi  ciency and performance may 

2.1. Executive Summary

stall as the underlying memory and storage technologies 

will reach fundamental scaling limitations. At the same time, 

training data for AI applications is exploding with no limit in 

sight. It is becoming increasingly clear that achieving new levels 

of bit density, energy effi  ciency, and performance in future 

information processing applications will require synergistic 

innovations using unexplored physical principles, from materials 

and devices to circuits and system-level functions.

Global demand for data storage grows exponentially, and 

today’s storage technologies will not be sustainable in the near 

future due to the sheer mass of material resources needed to 

support the ongoing data explosion. Thus, new radical solutions 
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for data/information storage technologies and 

methods are required. Figure 2.1 shows the projections 

of global data storage demand, both a conservative 

estimate and an upper bound (see Appendix for 

details). As indicated by Figure 2.1, future information 

and communication technologies are expected to 

generate enormous amounts of data, far surpassing 

today’s data fl ows. Currently, the production and use 

of information has been rising exponentially, and 

by 2040 the estimates for the worldwide amount 

of stored data are between 1024 and 1028 bits, as 

shown in Figure 2.1. Given that the silicon weight 

associated with one bit of highly scaled NAND fl ash 

memory is about 1 picogram (10-12 g)1, the total mass

of silicon wafers required to store 1026 bits would be 

approximately 1010 kg—and this would exceed the 

world’s total available silicon supply (Figure 2.2).

Challenge: Global demand for conventional 

silicon-based memory/storage is growing 

exponentially (Figure 2.1), while silicon production 

is growing only linearly (Figure 2.2). This disparity 

guarantees that silicon-based memory will become 

prohibitively expensive for future extreme-scale 

“big data” deployments within two decades.

Memory is an essential component of computers, 

and further advances in computing are impossible 

without “reinventing” the compute memory system, 

from memory cells and arrays at various levels of 

the memory system hierarchy to the memory system 

architecture. New memory solutions must be able 

to support multiple emerging applications, such as 

artifi cial intelligence, large-scale high-performance 

heterogeneous computing, and various mobile 

applications. Novel memory solutions must be able 

to operate reliably under diff erent application-

dependent environmental requirements.

Memory Grand Goal: Develop emerging 

memories and memory fabrics with >10-100X 

density and energy-effi  ciency improvement for 

each level of the memory hierarchy 

Storage Grand Goal: Discover storage 

technologies with >100x storage-density 

capability and new storage systems that can 

leverage these new technologies

Call for action

Radical advances in memory and data storage are required soon. 

Collaborative research is needed—from materials, devices, and circuits 

to architecture and processing—for future high-capacity energy-

effi  cient memory and data/information storage  solutions serving a 

vast range of future applications. 

i The Decadal Plan Executive Committee off ered recommendations on allocation of the additional $3.4B investment among the fi ve seismic shifts identifi ed in 
the Decadal Plan. The basis of allocation is the market share trend and our analysis of the R&D requirements for diff erent semiconductor and ICT technologies.
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Invest $750M annually throughout this decade in new 

trajectories for memory and storage. Selected priority 

research themes are outlined below.i

Figure 2.1: Global demand for memory and storage 
(utilizing silicon wafers) is projected to exceed the amount 

of global silicon that can be converted into wafers.

Figure 2.2: Global Si wafer supply: 1990-2020 data2 and future trend 
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2.2. Current and Future Application Drivers for Memory & Storage
Overview and needs

The amount of data we create as a society is rising 

exponentially. Approximately 59 zeta-bytes of data were 

created and processed in 2020. This was even further 

increased by the COVID-19 pandemic, which caused 

an upsurge in work-from-home3 employees and video 

communication, as well as the recording and downloading 

of video data3. It is projected that the world will create more 

than three times the data over the next fi ve years than it did 

in the previous fi ve3. These are enormous numbers, and they 

are driving a diff erent set of requirements to the ICT systems4. 

Applications fueling these trends include high performance 

computing (HPC) and data centers, edge computing (including 

autonomous driving), AR/VR, IoT, and more. There is a strong 

demand for strategies to improve computing and optimize 

storage and memory systems to respond to the growing 

performance needs. Future computing systems must serve 

a variety of applications with diff erent needs on compute 

and storage, which requires a fl exible approach to adapting 

compute and storage resources4.

To that end, devising new fl exible memory and storage 

system architectures  with application-dependent total 

system performance under as a metric is key.

AI/ML as a key driver for memory and storage

The key drivers for memory and storage are AI and ML, 

with AI training being most challenging in terms of memory 

bandwidth and capacity5,6. This general trend will continue 

over the foreseeable future. The AI models and the 

training data are growing exponentially in size, with more 

than one trillion parameters being on the horizon. In data 

centers today, multiple engines are used in parallel for AI 

training, demanding fast interconnects. Visual and graphics 

applications drive memory usage with stringent demands in 

speed, bandwidth, capacity, and energy-effi  ciency throughout 

the memory hierarchy.

For these large computer systems, a high utilization is 

critical for most effi  cient use and reduction of total cost of 

ownership (TCO)5. Underutilized resources have big negative 

TCO impact. Since diff erent tasks require a diff erent system 

composition for best utilization, the data centers need 

to be rearchitected in the future using disaggregation 

and composability. This allows fl exible composition and 

system confi guration to optimally serve a particular 

task. Considering that the various technical components 

(CPUs, GPUs, memory, and storage) have diff erent 

lifecycles, disaggregation additionally improves the system 

performance and reduces cost, as they can be replaced 

separately. Common memory systems for AI/ML applications 

include on-chip memory, high bandwidth memory (HBM), 

and GDDR—and all have diff erent architectural implications. 

A universal goal is to realize memory technology with much 

higher bandwidth and lower latency, while consuming less 

energy. While HBM DRAMs are already very power-effi  cient, 

roughly 2/3 of the power budget is still spent moving data 

between an SoC and the DRAM (Figure 2.4)5. Reducing 

the volume of data moved provides an opportunity for large 

improvement, this requires further research.

Diff erent concepts for disaggregation of memory and 

storage are already proposed, but more research is needed 

to identify the best way to use disaggregation to achieve 

TCO benefi ts at scale and improve latency. To generate 

these benefi ts, a multi-tiered memory approach that includes 

the use of storage-class memories is needed. The new 

architectures can pose a challenge but can also provide an 

opportunity for application development. The impact to 

legacy code needs to be understood and mitigated.
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Figure 2.3: AI in the data center: HBM2 memory system 
power (PHY + DRAM power at 2 Gbps, streaming 

workload; power breakdown for 100% reads or 100% 
writes5 (Courtesy of Steven Woo, Rambus Inc.)
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Memory hierarchy in large-scale heterogeneous 
systems 

In recent years, AI/ML workloads have become the major 

driver for data centers. Similarly, heterogeneous high-

performance computing (HPC) systems have fundamentally 

changed because of the applicability of GPUs for both 

compute-intensive scientifi c simulations and AI/ML. For 

example, the largest U.S. HPC System, named SUMMIT and 

located at Oak Ridge National Laboratory, is designed for 

scientifi c and AI workloads6. The system is built from very 

complex individual heterogenous nodes that comprise CPUs 

and GPUs, as well as three memory hierarchies with DRAM, 

HBM, and NVM and a cache hierarchy within the CPU and 

GPU. The system is optimized to be good for any type of 

HPC workload, from traditional modeling and simulation 

to data analytics and AI, including handling of massive data 

sets. Such heterogeneous systems possess an incredibly 

complex memory hierarchy (Figure 2.4) in order to guarantee 

availability and analysis of huge data sets. Extraordinary new 

capabilities are needed for most complex simulations, such 

as full 3D with sophisticated multi-physics models, multi-

time scale simulations, and molecular dynamics models. A 

complex system may be modeled by a multiplicity of these 

models which may need to run simultaneously for self-

consistent system design space studies. On top of these 

applications, ML is running and can steer the focus of the 

simulations to study abnormal activities and behaviors. 

In these complex calculations several individual applications 

are running in parallel, with a total number of up to 50,000 

processes operating simultaneously, interacting with each 

other and sharing memory. To program the complex 

memory hierarchy and to divide the work between the 

diff erent memory resources, will become even more 

complex in the future. This is simply not practical, new ways 

have to be found to manage the data movement, factoring, 

and reduction in an automated and hardware-driven manner.

Furthermore, the processes need to be secure and isolated 

from each other, which requires support in the memory 

system. The isolation boundaries in the memory system 

have to be managed with fi ne granularity to support 

complexity and security. Another challenge is the persistence 

of data. The persistence between hierarchies must be 

automatable for true performance and usability6. From 

today’s applications, the fi ne granularity moving in and out of 

execution requires very fast switching of state, thus reducing 

the state-switching latency.
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Figure 2.4: Example of complex memory hierarchy in heterogeneous HPC system6 (Courtesy of James Sexton, IBM Research)
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It is recognized now that moving 

computing near or down into the 

memory is critical for total system 

performance and energy effi  ciency 

especially for processes where the 

communication to computation ratio is 

large. However, ease of programmability 

needs to be maintained6.

Workload-centric memory 
organization

Both required memory bandwidth and 

latency depend on application drivers. 

Petabytes of memory should be fast, if 

needed, and should, accordingly, have 

low latency if needed. Additionally, for 

HPC, the HBM memory needs to be 

cheap and energy effi  cient to enable 

increases in the memory capacity of 

accelerators. That memory is too small 

today and needs a signifi cant increase 

within the next fi ve years. The hardware 

should be suitable for the entire range 

of applications, and heterogeneous 

systems bring it all together7.

The memory system organization/

hardware should allow optimal 

support of a vast range of 

applications, heterogeneous systems 

are the primary pathways in this 

regard. For example, in the fi eld of 

biology which is another important 

application for HPC, in particular, the 

omicsii data is exploding (Figure 2.58), 

and much bigger datasets need to 

be stored, accessed, and analyzed. A 

distributed infrastructure that is linked 

to a central metadata store needs to be 

fl exible for the evolving data sets, tools, 

workfl ows, etc., including expanded 

capabilities for analysis. In all these huge 

systems it is critical that the systems are 

not too complex or that the complexity 

is taken care of automatically and that 

they remain programmable.

Besides HPC and data centers, another 

key application driver for memory and 

storage is autonomous driving. Already 

today, a car makes use of a variety of 

i iOmics aims at the collective characterization and quantifi cation of pools of biological molecules that translate into the structure, function, and dynamics of an 
organism or organisms.
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diff erent memory types and diff erent 

memory technology nodes distributed 

across the system9. Examples include 

DRAMs for video and graphics 

processing, NOR/NAND Flash for 

code, instructions, and data storage, 

EEPROM for data logging, and 

embedded memory in CPU like SRAM. 

Also, emerging NVM memories like 

PCM and MRAM are used for wake up, 

personalization, tuning and learning, 

diagnostics, and data logging. The 

major drivers for automotive memory 

consumption are (i) automotive 

connectivity, (ii) infotainment and in-

vehicle experience, and (iii) advanced 

driver-assistance systems (ADAS) and 

autonomous driving9.

The timeline for the ADAS and 

automated driving is shown in Figure 

2.6. In fact, “automobiles are becoming 

high-performance data-processing 

compute servers on wheels”9. A number 

of sensors like Rada, Vision, and Lidar 

are combined with monitoring the 

driving and the driver, as well as the 

status of the vehicle itself. All these 

processes that enable simple and 

complex decisions for fast action are 

very data- and memory-intensive. It 

is expected that moving from level 

two to level fi ve of autonomous 

driving within the next 10 years will 

lead to a 10x increase in memory 

usage. The level fi ve autonomous 

drive is estimated to require a 100x 

processing increase from where we 

are today in order to process the 

additional sensing inputs. This drives 

up NVM usage for code and deep ML 

data storage, as well as the SRAM/

DRAM usage required for the sensor 

data processing.

Figure 2.5: Advances in sequencing and omics technologies have far outpaced 
data infrastructure8 (Courtesy of Kjiersten Fagnan, DOE Joint Genome Institute)
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In addition, the infotainment and 

in-vehicle experience will continue to 

demand increase in memory capacity. 

Diff erent systems are available with 

which the occupants interact in 

diff erent ways via voice commands, 

gestures, and perhaps even augmented 

reality. Over-the-air (OTA) updates and 

security needs require additional non-

volatile memory and data logging, so 

memory usage is increasing (see Table 

2.2). Consequently, it is expected that 

NVM storage needs for autonomous 

driving are growing by more than 100x 

in the next decade and the in-vehicle 

infotainment will demand 10x more 

NVM over the next decade. Another 

critical challenge is to make real-time 

applications work where multiple 

layers of caching and storage of the 

same content within a system are 

needed. This is an area where system 

optimization is possible.

Further research is needed to develop 

memory subsystems and optimize the 

interfaces for improved latency and 

bandwidth. Emerging technologies, 

such as magnetic or resistive memories, 

are very interesting for meeting the 

demands of power, density, and high-

temperature operation.

The system form factors of the variety 

of applications at the edge have 

similar issues and are in competition 

with the disaggregation concept. 

New memory architectures need to 

be developed that are more effi  cient 

about memory management and usage. 

Therefore, a better understanding 

of the memory usage profi les for 

the diff erent applications needs to 

be acquired to comprehend further 

memory architecture optimization 

opportunities. Considering the rapid 

changes (for example, in AI algorithms), 

workload-dependent memory 

hierarchies and SRAM/DRAM 

balancing are interesting concepts to 

be developed to improve fl exibility. 

Memory is becoming a big part for all 

these edge applications, where systems 

need to be more and more tailored 

to use cases and integrated through 

custom packages. Flexibility for 

diff erent use cases needs to be built 

into the design. Of course, the memory 

cost remains essential.
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Figure 2.6: Timeline for the ADAS and automated driving9 (Courtesy of Thomas Jew, NXP)

Level 2 Level 3 Level 4 Level 5

2010+ 2021+ 2025+ 2030+

Partial
Automation

Full
Automation

Conditional
Automation

High
Automation

Application 2020 2023 2025 2030

In-Vehicle 
Infotainment

~64/128GB ~128/256GB ~256/512GB ~512GB/1TB

Autonomous 
Drive

~8/64GB ~128/256GB ~512GB/1TB ~1/2TB

Table 2.2: Trends in automotive nonvolatile memory and storage (Source: “A look 
at Automotive Memory in the E-Mobility Era”, SK hynix Newsroom, July 30, 2020)

Table 2.1: Automotive electronics: applications and functions/features9

Applications Domains Functions/Features
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Automotive Connectivity
• Smart Car Access
• Vehicle Network Processing/Gateway
• V2X Communications

Infotainment and In-vehicle 
Experience

• Instrumentation
• Infotainment

ADAS and Autonomous 
Driving

• Radar, Vision, Lidar, ...
• Safe Central Compute for Assisted/

Autonomous Drive

Powertrain and Vehicle 
Dynamics

• Power Train Control
• Active Suspension Braking/Stability Control
• Steering

Body and Comfort

• Interior Exterior Lighting
• Tire Pressure Management
• Electric pump/motor control
• HVAC

Major drivers 
for Automotive 
memory 
consumption
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2.3. Mobile and IoT Computing Perspectives on Memory 
Technology
Overview and needs

Information processing and communication technologies 

are critical elements to humankind advancements in the 

knowledge and scientifi c understanding of the world. 

In recent decades, the unprecedented improvements 

in performance, energy effi  ciency, density, and cost of 

the computation and communications capabilities have 

synergistically accelerated those advancements by making 

them broadly accessible and ubiquitous. The rate of 

advancement has relied on sustained innovation spanning 

the entire systems stack at each level and across levels in 

the hierarchy from software, algorithms, architectures, 

circuits, devices, interconnects, and materials. The demand 

for new mobile applications and functionalities, along with 

the relentless quest for higher levels of energy-effi  cient 

computing performance, continue to drive technological 

changes. By end of this decade, these performance 

improvements will stall, as the underlying logic, memory, 
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Figure 2.7a: Exploding volumes of information, a proxy for 
increasing information processing demands both in data 

centers, at the edge, and in end devices. (Source: Data Age 2025, 
sponsored by Seagate with data from IDC Global DataSphere, 

Nov 201810; adapted fi gure courtesy of Gary Bronner, Rambus11)

Figure 2.7b: Growth of AI-related computing workloads at the edge is projected to grow at a faster pace than the 
data centers over this decade. (Source: McKinsey & Company12; adapted fi gure courtesy of Carlos H. Diaz, TSMC)
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and storage technologies run into power-scaling limitations 

associated with the deterministic conventional computing, 

the current neural networks supporting AI, and the 

fundamental physical scaling limits of current devices and 

interconnect technologies. This section seeks to identify 

memory requirements and solution scenarios that can drive 

or support dramatic mobile and IoT computing paradigm 

changes over this decade to maintain the promise of Moore’s 

Law economics.

Memory systems for AI

Artifi cial intelligence operating on abundant data is 

expected to be a dominant application driver for mobile and 

IoT throughout all segments, from consumer and industrial 

to automotive and fast-growing IoT. The information 

volume will continue to grow unabated, as exemplifi ed 

in Figure 2.7a. The AI-related workloads will continue to 

shift to the edge and end devices, and those workloads will 

increasingly comprise training (as illustrated by Figure 2.7b) 

and expanded cognitive abilities (as shown in Figure 2.7c). 

New functionalities and capabilities for sensing, processing, 

and actuation will add to the compute workloads of mobile 

and IoT devices. To that end, disruptive and sustainable 

performance, as well as energy effi  ciency improvements and 

scalable system integration capabilities will be required. Over 

the next decade, energy-effi  ciency enhancements of 100X or 

more, along with corresponding performance improvements, 

will be needed to enable new cognitive capabilities for 

the increased computational workload demand that 

fuels industry growth to positively impact the society at 

large. The innovations to eff ect that level of change span 

from software to hardware and from architectures to the 

fundamental building blocks (in the form of design primitives 

for circuits), and they must include the essential constituents 

of underlying semiconductor memory, logic and integration 

technologies. Stepping up research during this decade is key 

to identify and distill tangible platform-capable alternatives 

to state-of-the-art logic transistors, memory elements, and 

integration approaches to meet aggressive energy-effi  ciency 

and performance goals stated above. In addition, new system 

scale-up approaches that utilize the innovations in transistor, 

memory, and integration technologies are crucial.

IoT and automotive perspectives on memory              

Attaining goals in energy effi  ciency, performance, and system 

integration need to be met, while also meeting reliability 

needs associated with unique environmental requirements 

specifi c to the mobile and IoT applications. In consumer 

applications, semiconductor components (digital logic and 

memory, analog, et al.) need to have a minimum life of at 

least three years, with operating ambient temperature of 

85°C and early failure rates less than 100ppm. For industrial 

applications, semiconductor components need to have a 

minimum life of at least 15 years, with operating ambient 

temperature of 150°C and early failure rates less than 

100ppm. In automotive applications, lifetimes over 20 years, 

with operating temperature of ~150°C and earlier failure 

rates less than 1ppb are must. Consequently, research in 

semiconductor devices for memory, logic, and integration 

technologies should include studies on high-temperature 

reliability, as well as models and methodology to push 

against intrinsic reliability limits (endurance, safety 

assurance, software/hardware updates, and security).

On-chip memory and its dense 3D-integration for 
abundant data computing at the edge

Computing engines rely on processing units and a hierarchical 

system of memory and storage. A representative memory 

system hierarchy is illustrated in Figure 2.8. The memory 

access frequency and speed are fastest at the top of the 

hierarchy, whereas both the memory and storage capacity 

increase away from the processing units, i.e., towards the 

bottom of the memory system. The exploding volumes 

of data/information to be processed demand increasing 

amounts of memory capacity at each level of the memory-

system hierarchy. Data movement from the memory system 

to the processing unit has also become a bottleneck in 

present-day systems. To tackle these challenges, research 

eff orts need to be stepped up in two principal directions. 
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Figure 2.7c: Next-generation AI cognitive capabilities may 
only become pervasive (ubiquitous) if energy effi  ciency of 
the associated algorithms and compute engines improves 

over two orders of magnitude (> 100x) beyond today’s 
capabilities13. (courtesy of Carlos H. Diaz, TSMC)
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One such research vector relates to the need for denser and 

more energy-effi  cient storage (at the memory-cell and array 

levels) across the memory stack, while maintaining the same 

or better access speeds of state-of-the art solutions. Another 

research vector aims to resolve memory bandwidth and latency 

bottlenecks through dense 3D integration of the processing 

units and various memory levels of the memory-system 

hierarchy. A third research vector must investigate effi  cient 

ways of scaling up future systems through an orchestrated 

approach that combines effi  cient multi-chip(let) integration 

with the on-chip integration approaches explored by the above 

two research vectors. Combined, these three vectors allow the 

creation of new systems that create the illusion of a single 

chip with massive on-chip memory and compute.

Disruptive hardware solutions

While exploring solutions in these spaces, it is also important 

to ensure disruptive but cohesive hardware and software 

solutions that can adapt to slow-evolving interface standards, 

while also accelerating the transition of those emerging 

concepts. Critical research areas at the cell level include: 

(i) scalable memory cells capable of storing multiple bits 

with same or better energy effi  ciency and controllability/

variability than single-bit-cell alternatives at comparable 

speed; (ii) denser, faster, and more energy-effi  cient memory 

cells for cache and main memory applications than state-of-

art solutions; (iii) emerging memories having non-volatile 

capabilities that can be quickly turned ON/OFF and are 

compatible with leading-edge logic technology nodes; (iv) 

compute-in-memory accelerators; and (v) data-compression/

decompression algorithms. 3D processing and memory-

system integration require advances in platform-capable 

die stacking or monolithic solutions. Optimal solutions may 

remain application-dependent and will continue to evolve, 

driven by density, energy effi  ciency, performance, and cost. 

Critical challenges are associated with sustainable array-level 

memory scaling with > 100x denser connectivity and low-cost 

heat removal capability > 1kW/cm2, both adhering to the 

tight reliability requirements outlined above. Research focus 

areas include roadmaps for increasingly denser connectivity, 

thinner stackable active layers, low-thermal budget of high-

performance devices, low-cost active layer patterning and 

integration, and low-cost heat removal. As problem sizes 

continue to rapidly grow, it is unlikely that on-chip integration 

alone can keep up. New multi-chip systems that exploit dense 

on-chip integration and effi  cient multi-chip(let) integration to 

scale effi  ciently and fl exibly for large (AI) problem sizes will be 

crucial moving forward. The goal should be to provide illusory 

performance and energy as if all memory and compute were 

densely integrated on a single chip.
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Figure 2.8: Memory system hierarchy (adapted fi gure courtesy of Carlos H. Diaz, TSMC)
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New information representation

Mobile computing workloads will continue to be diverse, in 

line with the end applications. Yet, regardless of the workload 

type, all are subject to tight energy bounds, increased 

performance, and robustness requirements, as indicated 

above. Furthermore, AI solutions, including those enabled 

through AI accelerators, need to remain platform-capable, 

i.e., able to support multiple application types. Consequently, 

key opportunities in the quest for intelligent systems with 

superior energy effi  ciency and high performance include 

mastering new information representation forms that are 

better suited for enhancing AI’s cognitive capabilities, while 

also facilitating near or in-memory processing. For example, 

cognitive models that rely on information representation 

by high-dimensional vectors are fundamentally one-pass, 

continuous-learning, and high-level-reasoning capable. High-

dimensional computing (HDC) is inherently parallel, local, 

and error-resilient. These fundamental attributes are well-

poised to enable levels of energy effi  ciency not otherwise 

attainable by conventional DNN models. These must be 

leveraged to develop corresponding specialized processing 

units to augment AI capabilities beyond those otherwise 

attainable by state-of-the-art deep neural networks or 

convolutional neural networks. Therefore, research in new 

information representation and computing paradigms is also 

necessary, beyond the opportunities in energy effi  ciency 

that might arise from revolutionary changes to the essential 

constituents of the logic and memory technologies and the 

3D-integration capabilities. Research is needed in novel 

types of information representation and processing that: 

(i) are amenable to near or in-memory processing; (ii) lend 

themselves to AI models that can scale signifi cantly better 

with problem size than state-of-the-art DNNs; (iii) can support 

both continuous learning at the edge and increased levels 

of cognitive capabilities under tight mobile-application 

energy budgets; and (iv) are much more error-resilient 

and, consequently, capable of opening up the memory 

and logic operation toward lower power supplies than 

otherwise possible. There is great opportunity to create new 

AI algorithms, or information processing algorithms in general, 

that are aware of the underlying hardware technologies (e.g., 

to overcome the emerging memory challenges of write energy, 

latency, and endurance challenges, as well as ensure error 

resilience with multi-bit-per-cell storage).

Key areas of focus and follow-on research

Edge- and mobile-application-driven memory systems

• Memory needs: high-power effi  ciency; total on-chip 

memory and on-card memory; low power (compute, peak 

current draw); and encryption 

• SRAM: Enhance area and power reduction for SRAM with 

advanced process nodes

• Discover 3D-integration technologies to enable more 

on-die SRAM 

• Non-volatile (NV) memories: enable NV memories in 

cutting-edge process nodes for edge, data-center and auto 

products 

• Reduce time from technology readiness to availability in 

cutting-edge process nodes 

• Match SRAM’s endurance and write power to enable 

widespread use

• In-memory compute

• On-chip – with existing/legacy code

• Off -chip – on main memory

• External memory: Higher bandwidth 

• ~ GB/sec but at lower pJ/bit such that HBM-like GB/sec 

fi t into a 20W edge card 
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Limited power (15–20W 
total)—typical

High performance e.g., 
AI inferences/sec/W

Small form-factor solution

Most compute e.g., 
AI inference, video 
processing on the edge 
platform (vs in Cloud

Could be deployed in harsh 
environment e.g., Ambient 
Temp: -40C to +60C

Secure storage of AI 
network in Edge box

Figure 2.9: Edge computing characteristics and drivers for memory technology14 (courtesy of Rashid Attar, Qualcomm).
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Memory systems for AI 

• Research needs: energy-effi  cient memory cells and energy-

effi  cient algorithms that minimize bandwidth needs and 

maximize performance and accuracy

• Rapidly improve energy effi  ciency as the data volume to 

compute increases

• Expand memory bandwidth for AI applications 

• Discover memory-effi  cient algorithms (more Ops/byte) 

IoT and automotive perspectives on memory

• Identify and develop alternatives to 6T SRAM for on-chip 

code/data

• Smaller area/bit, low leakage, baseline process 

compatibility, and zero/low process cost adder

• Step up function improvement in performance for 

emerging memories/cells and scalability

• Cell-level research goal: >10X improvement for key 

parameters aiming for 100-1000X improvement in power/

energy with enhanced reliability and lower cost/area 

• Achieve area- power-effi  cient memories by minimizing IR 

drop, variations, and stochastic writes

• Identify Flash function replacements @ 28nm and below

• New capabilities needed with endurance > 1M cycles

• Improve MRAM endurance to attain > 1E10 cycles with 

enhanced thermal stability, magnetic immunity, and low 

BER, while also reducing write current

On-chip memory and its dense (3D) integration for 

abundant-data computing at the edge

• Address fundamental limits that are posing major 

challenges in on-chip-memory capacity and connectivity 

(memory wall), area scalability (miniaturization wall), and 

the logic and memory power walls of integrated systems

• Ensure “enough” on-chip memory through dense 3D (non-

monolithic or monolithic) integration of memory and logic 

• Such technologies are now practically possible in 

commercial silicon foundries (using silicon and non-

silicon technologies)
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Figure 2.10a: IoT spans “network edge” to “application edge,” demanding high-performance 
gateways and routers, as well as  ultra-low-power sense, compute, actuation, and 

connectivity15. (courtesy of Kelly Baker and Gowrishankar Chindalore, NXP)

Figure 2.10b: IoT and automotive memory usage and 
requirements15 (courtesy of Kelly Baker, NXP)
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• Discover new ways for scale up

• As problem sizes grow at fast rates, Illusion systems 

(Figure 2.11a) become crucial. Illusion employs an 

optimized combination of “enough” on-chip memory 

(through 3D, multi-bit cells), quick chip wakeup and 

shutdown, and special multi-chip mapping to scale 

eff ectively for a wide range of (AI) workloads.

• Create a new path to scale future (AI) systems through 

orchestration among dense on-chip integration, effi  cient 

multi-chip(let) integration, and Illusion (Figure 2.11)

• Create memory-technology-aware algorithms to overcome 

write (latency, energy, endurance) challenges and ensure 

error resilience (e.g., for multi-bit storage)
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Figure 2.11b: Orchestrated dense on-chip integration, effi  cient multi-chip(let) integration, and Illusion achieve scaled 
(AI) systems not possible with the individual approaches alone16. (courtesy of Subhasish Mitra, Stanford University)

Figure 2.11a: “Illusion” system has the potential of closely approximating the performance, energy, and scalability of 
a “dream” chip that could hold all memory/compute on-chip16. (courtesy of Subhasish Mitra, Stanford University)
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In-memory computing across technologies17

• Analog IMC trades energy effi  ciency and throughput for SNR

• Need high row parallelism (N) for energy effi  ciency and 

throughput

• Level of row parallelism (thus energy/throughput) is 

limited by SNR

• Establish higher cell SNR and resistance

• Compute metrics (TOPS/W, TOPS/mm2)

• Bigger cell, if needed

• Address memory-write costs  

• Lower write energy and higher write endurance

• e-NVM technologies will need to address write energy 

and endurance

• Create robust architectural and SW abstractions

Memory in machine vision

• Address exploding volume of video (social media, surveillance)

• 3D-point clouds and super/hyper-resolution imaging add 

to volume

• Focus on transformation from archival store-and-play video 

to interactive video

• Video content analysis (e.g., content rating)

• Content-based queries (e.g., surveillance)

• Synthetic video and video summarization (e.g., digital 

advertisement, assistive vision)

• Address costly data movement

• Need compute at various levels of the memory 

hierarchy, as well as new data representation and in-

memory compute primitives

• Discover new memory technologies with more energy-

effi  cient primitives (SRAM, CAM, etc.)

• Screen viable emerging memories using variability as a 

critical metric 

2.4. HPC & Data-Center 
Computing Perspectives on 
Memory and Storage
Overview and needs

The large-scale high-performance-computing community 

is evolving. While the traditional focus in scientifi c 

computing remains prevalent, e.g. the solution of partial 

diff erential equations, the integration of AI/ML methods 

and various types of data and graph analytics represent 

the heterogeneous computing workloads of the future. 

These new workloads are both data-intensive and compute-

intensive, requiring a wider range of data-access patterns 

than are found in traditional HPC applications. In data-center 

computing, AI/ML and data analytics are also experiencing 

tremendous growth, far higher than traditional commercial 

transaction processing workloads. The integration 

of commercial workloads with AI/ML and data/graph 

analytics present signifi cant challenges and opportunities 

to the memory and storage requirements. Large-scale 

heterogeneous system architectures are common in both 

HPC and data-center deployments, but these systems have 

separate CPUs with DDR/HBM memory and GPUs with GDDR/

HBM memories, all integrated with a system-interconnect-

network fabric. This system interconnect also extends out to 

I/O nodes and storage. The current system architecture model 

is a challenge for future heterogeneous workloads because 

the separate memory pools, perhaps even within a single 

compute node, lead to performance, energy, and software 

ineffi  ciencies. Future memory solutions are required that 

can facilitate low-level integration of heterogeneous 

architectures, rather than continuing to raise the barriers 

to integration found in current system architectures.

Memory is one of the main concerns in today’s HPC and 

data-center computing. In fact, “memory is a number-one 

pain point and limitation to high compute performance and 

power improvement; storage has been progressing in terms 

of performance and cost, memory is falling behind” (Nafea 

Bshara, AWS19). Photonics and networking can support fast 

access to storage, and, with it, the performance/cost trajectory 

of available storage solutions is headed in the right direction19.

Memory bandwidth is a common limitation for both HPC 

and data-center applications. The second area of concern 

is capacity scaling. Large-scale system architectures are 

evolving towards tightly coupled fast memory, supplemented 

by a much larger shared pool of “far” or “disaggregated” 
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Figure 2.12: Moving data from off -chip memory 
to processing unit is a computing bottleneck18. 

(courtesy of Vijaykrishnan Narayanan, Penn State)
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memory. This high-level perspective indicates that perhaps 

disaggregated memory solutions that provide very high levels 

of internal bandwidth for data movement—and some degree 

of in-memory computing—may be interesting areas for 

advancement. Disaggregation of memory and compute has 

data-center benefi ts due to fl exibility to integrate systems 

with diff erent development cycles of compute and memory 

technologies, as well as the need for architectural fl exibility 

for diff erent workloads. However, disaggregation also 

results in performance constraints due to lower bandwidth 

and higher latency, which may limit adoption in HPC systems.

Workload evolution

The HPC and data-center space is rapidly being consumed by 

AI and ML applications. As can be seen in Figure 2.13, Deep 

Learning, which underlies the largest AI applications today (e.g., 

in autonomous vehicles, fraud detection, digital advertising, and 

many other domains), is the largest category of AI application in 

this space. Here, the work, which consists of machine-learning 

training, and machine-learning inference, is more commonly 

done with domain-specifi c accelerators built on custom silicon 

or FPGAs. In the data center, AI and ML applications have 

paralleled the growth of graphics applications as the driver 

for mobile device architectures. Data-center workloads, most 

importantly, the ML training workloads, involve largely 

random access due to multi-core, multi-thread, and multi-

tenant scaling of parallelism. In contrast, HPC workloads are 

designed to have a large degree of locality and thus are very 

dependent on streaming bandwidth from memory. In both 

cases, it appears that bandwidth is an important factor, but 

memory-level parallelism may play a more important role in 

data-center applications.

Architecture evolution

As can be seen in Figure 2.1420, DRAM represents the 

majority of the cost (and even a larger majority of the silicon 

area) of modern computing platforms in the data center. 

In HPC applications, tightly coupled HBM (High Bandwidth 

Memory) memories are becoming commonplace, with 

support for remote direct memory access (RDMA) used for 

large scale numerical solvers for weather, structural, and 

fl uid modeling. In data centers, to reduce memory cost 

and to improve memory usage effi  ciency, far memory and 

disaggregated memories are being implemented, thereby 

improving uniformity of memory provisioning, extending 

capacity expansion range, and reducing node-to-node data-

movement requirements in distributed systems.

Accelerators are becoming much more common, with large 

cloud and HPC providers generating their own custom silicon 

(for example Google’s TPU or AWS Inferentia) or accelerating 

applications with COTS accelerators and FPGA solutions. 

As can be seen in Figure 2.1519, logic cores are currently 

consuming on the order of 500W and are projected to consume 

on the order of 1KW by the middle to end of the decade.
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Figure 2.13. Revenue by Artifi cial Intelligence 
application category (courtesy of Tractica)

Figure 2.14: Compute node costs by component20 
(courtesy of Sailesh Kottapalli, Intel)

Figure 2.15: Thermally limited operating power by component 
type19 (courtesy of Nafea Bshara, Amazon Web Services)
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Thus, package-level integration utilizing heat sinks and air 

cooling is becoming limited by thermal constraints. While more 

exotic cooling solutions exist, these tend to be impractical 

in production environments due to the cost and support 

requirements. These thermal and power constraints for 

accelerators are also driving increased demand for DRAM 

memory in HBM packages and media formats.

Innovative memory and storage architectures are 

continuously being proposed by solution suppliers and 

academia. For these to come to fruition, however, a number 

of conditions have to be met: a suffi  ciently large demand 

for such solutions must be present for the technology to 

justify the development cost of the new innovation; the 

innovation must be suffi  ciently compatible with existing 

solutions so it can be seamlessly and timely adopted by 

the industry, including application developers and data-

center operators; and that the hardware and software 

development cost is not exorbitant.

An excellent example of innovation that meets all of these 

criteria can be found in the advent of High Bandwidth Memory 

(HBM) and illustrated in Figure 2.1621. The HBM architecture 

utilizes relatively standard DRAM memory silicon on top of a 

higher-performance silicon layer based on a 3D-stacked DRAM 

process interconnected with a revolutionary Thru-Silicon-Via 

interconnect technology. This provides exceptionally high 

memory bandwidth to processors and accelerators through 

a silicon interposer. In terms of $/GB, this technology is 

exceptionally expensive. For HPC applications, however, 

the metric of interest is not GB but GB/s—HPC applications 

favor bandwidth over capacity. From this perspective, HBM 

has clear advantages over DDR memory in the HPC space 

on both power and cost, as can be seen in Figure 2.16 [Daniel 

Ernst, PhD, Hewlett Packard Enterprise].

There has recently been a focus on memory architectures 

targeted towards optimizing bandwidth for a number of 

disparate platforms (Figure 2.1722), including HBM for 

graphics, AI, and HPC workloads, as well as GDDR for 

graphics and DDR for general-purpose compute applications.

Another interesting scaling challenge emerging in the data 

center and in scientifi c computing is related to the scaling of 

memory bandwidth and compute capability per silicon die 

(Figure 2.1819). As it becomes increasingly diffi  cult to scale 
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Figure 2.17: Datacenter memory technology options22 (courtesy of Steve Pawlowski, Micron).

Figure 2.16: Memory power and cost by media type21 

(courtesy of Dan Ernst, Hewlett Packard Enterprise).
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transistor density and operating frequencies, more and more 

processor vendors and data-center operators are turning to 

parallelism to address scaling challenges. Examples include 

the use of clusters of GPUs for ML training and for numerical 

computing in HPC, as well as the increasing trends for many 

core architectures. This results in a continued exponential 

scaling of compute capability per silicon die, especially when 

we consider accelerators like those used for computation of 

machine learning and AI workloads. With increasing memory 

capacities, memory architectures can, in principle, keep pace 

with this increasing demand for bandwidth. The limitation, 

however, is the interfaces to the memory subsystems. High 

Bandwidth Memory (HBM) addresses this challenge by providing 

a very wide interface between the compute accelerator and 

the memory. On the other hand, GDDR memory addresses this 

challenge by increasing the frequency of the interface. Both of 

these solutions, however, have their drawbacks, largely realized 

in higher cost-per-bit and limited capacities.

“Far” memory solutions

In many ways system memory in modern computing 

platforms can be viewed as a cache with the virtual memory 

system acting as the tags for large cache (Figure 2.1923). Thus, 

future main memories need not be external, provided they 

are large enough to serve the cache functionality required 

by the operating system. This opens doors to incorporate 

numerous emerging memory technologies that can be 

integrated with the CPU in a single die, providing hundreds of 

GB in a monolithic fashion.

The advent of cache-coherent “far” memory protocols like CXL, 

CCIX, Open-CAPI, and Gen-Z have opened a number of doors 

with regard to memory subsystems. “CXL is a good start, 

but needs to be 10X faster” [Nafea Bshara, AWS]. In their 

simplest form, they provide a means by which cloud and HPC 

providers can expand memory capacity and bandwidth by 

attaching memory to interfaces that would traditionally be 

used for storage. With the addition of a switching fabric, these 

protocols allow service providers to confi gure these large 

memory subsystems to be shared among multiple servers 

in a rack or in a data center. As such, they allow the memory 

to be disaggregated from the compute infrastructure and 

provisioned optimally among the many workloads running on 

the many servers within the distributed computing system. In 

addition to adding fl exibility for both the data-center architect 

and the memory-solution provider, these interfaces open the 

door for subsystem-level acceleration and, with the optional 

inclusion of both memory and storage behind this interface, 

allow for the possibility of autonomous data movement within 

the combined memory/storage subsystem, which in part, 

alleviates the bandwidth bottleneck into the processor.

Storage 

Although storage may not be the top pain point in the data 

center, it is still a very important aspect of the data center. 

Storage is also exceptionally important for the evolving 

spectrum of data-intensive HPC applications. In terms of bit 

capacity, storage dwarfs all the memory systems combined. 

In essence, all memory systems in use today are simply caches 

for the storage systems. In other words, the storage systems 

(which might include network-attached, block-based storage, 

shared fi lesystems, object/blob storage systems, tape 

archives, and other architectures) are the only subsystems in 

the data center that have the resilience features required to 

act as the fi nal resting place for the precious data in a data 

center. There is no question that there are clear competitive 

battlegrounds between performance and capacities of NAND 

or emerging memory SSDs with HDDs and tape to support 

these diff ering types of storage. Storage-class memories 

like 3D XPoint are emerging to provide fast random access, 

reasonable power effi  ciency, and nonvolatility. In this role 
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Figure 2.18: Normalized compute density versus memory 
bandwidth19 (courtesy of Nafea Bshara, Amazon Web Services).

Figure 2.19: Main memory as cache23 
(courtesy of Bruce Jacob, University of Maryland).
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they may provide an interesting additional tier of memory 

between the byte-oriented DRAM memory and the block-

oriented NAND SSDs. In this growing niche, they provide 

improved performance over block-oriented NAND SSDs 

at a higher cost, and they provide a higher capacity, lower 

performance, and lower-cost solution for relatively fast 

random-access memory.

Near-data processing

The model of near-data processing is becoming an age-old 

concept. Numerous near-data processing proofs of concept can 

be found in industry and academia. Industry support around 

a “computational storage” standard is beginning to emerge 

[www.snia.org]. An advanced concept for compute-near 

memory is described in Figure 2.2022. Some examples of this 

include the repurposing of dense-memory arrays for compute, 

as in analog multiply-accumulate on resistive arrays; large-scale 

state machine, based on a DRAM process like the Automata 

processor; or in more direct approaches of placing conventional 

microcontrollers and accelerators for data manipulation onto 

memory silicon. A similar approach demonstrating the value 

of tightly coupled memories have represented this strategy 

using FPGAs with embedded CPUs (as hard macros or as soft 

IP), with decades of success, especially for DSP and other high-

performance embedded applications.

In modern computer architectures, however, there are 

a number of barriers to adoption of these technologies. 

The primary barrier to adoption of these technologies 

is that they are often very diffi  cult to program. Entirely 

new programming paradigms need to be adopted. Since 

it is typically not the case that the entire application 

can be accelerated on this special-purpose hardware, 

the new programming paradigm must be seamlessly 

integrated into more conventional programming models, 

for example, by adding hardware-specifi c custom 

processor instructions, providing higher-level libraries, 

or by extending existing programming languages and 

compilers to support alternative programming models, 

including general-purpose or domain-specifi c languages 

(DSLs). These alternative programming models, libraries, 

and languages must consider the implications of parallel 

accesses to memory. Another large barrier to adoption of 

compute-in-memory on conventional DDR or LPDDR memory 

busses is that the protocol requires deterministic latency. 

In such an environment, it is diffi  cult to take segments 

of memory offl  ine to allow private access for in-memory 

compute operations to happen. Also, modern computer 

architectures stripe data structures across memory dice, 

making compute-in-memory problematic, as the context for 

computation isn’t normally co-located within a single memory 

component. Similarly, within storage systems, the abstraction 

of the fi lesystem and storage stack—including confi gurable 

redundancy features like RAID—make it impossible for the 

storage devices to understand the underlying structure of the 

data. The natural solution to this problem is to build memory- 

and storage-based near-data compute elements on a specialized 

accelerator. This closely resembles the model of hosting a 

graphics accelerator on a graphics card or a TPU processor for 

matrix multiplication on a specialized subsystem.

The roofl ine graph in Figure 2.2122 shows the relationship 

between operational intensity (compute operations per 

byte of data transferred to the compute unit) versus the 
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Figure 2.20: Advanced concept for near-data processing22 (courtesy of Steve Pawlowski, Micron).
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compute rate (TeraOps per second). Applications with lower 

operational intensity are naturally bound by the rate at 

which data can be transferred into the processor. Increasing 

bandwidth for these applications increases performance. 

Applications with higher operational intensity (on the right 

of this graph) are compute bound and require a faster or 

more parallel processor for performance improvements. As 

was discussed above, memory bandwidth and the energy 

cost of data movement are extremely important problems 

in the industry today. Both factors can be improved with the 

enablement of near-data processing.

The advent of cache-coherent protocols, such as CXL and 

others, allows for such an accelerator. To the conventional 

computing system, this appears as a combined “far” memory, 

storage, and accelerator. There are clearly large energy 

advantages to be had in reducing data movement for data-

oriented operations, but it is unclear how much data 

movement must occur between main system memory and 

this accelerator subsystem.

This is one area in which relatively modest investments in 

academia will be pivotal in enabling new technologies in 

the market. Development of industry-adopted open-source 

frameworks that lower the programming barrier for near-data 

accelerators lowers the barrier to entry of such technologies. 

Also, supporting the current industry collaboration consortia, 

standardizing high-bandwidth cache-coherent memory and 

storage systems enables interfaces in modern computing systems 

where such accelerators might be installed. Industry adoption of 

new technologies requires a market sizeable enough to fund 

the development of the new technology, as well as technology 

that is close enough to the extant technology to be brought 

to market with reasonable investment. 

AI applications and the underlying 

ML technologies are examples of such 

technologies, with the scale, breadth 

of use cases, and future growth needs 

to justify such investments. Having an 

interface to plug such a device into, as 

well as a programming model to make 

it easy to near-optimally program, 

signifi cantly lowers the barrier for 

such technologies.

Key areas of focus and follow-
on research

We are transitioning into an age of 

heterogeneous computing, where 

computing functions will be as or 

more likely to be performed on a 

domain-specifi c accelerator than on a general-purpose CPU. 

The advent of compute-centric accelerators like GPUs and AI 

accelerators has enabled new usages and a wealth of new 

businesses within the industry. Because the energy cost of 

data movement between memory and processing units is high 

relative to the energy cost of performing the operation, these 

accelerators—and general purpose CPUs—are notoriously 

poor at effi  ciently performing near-data processing.

Imagining a computing system of the future that enabled 

near-data computing may include one that is heterogeneous in 

nature, with domain-specifi c accelerators to perform domain-

specifi c operations. These would obviously include elements 

like CPUs, GPUs, AI accelerators and confi gurable FPGAs. It 

would also be designed in such a way that data structures 

are naturally co-located on memory and storage devices, 

and so the memory and storage devices can reason about 

the structure of the data. The system would have high peer-

to-peer bandwidth among memory, storage, and all of the 

heterogeneous compute elements. The interconnects enabling 

direct data movement among memory devices, storage devices, 

and compute elements need to be extremely high bandwidth 

and be energy effi  cient. Near-data processing elements would 

be tightly coupled with memory dice and storage subsystems, 

and the software and system design would seamlessly transfer 

near-data processing subroutines into the memory and storage 

components such that local processing could be completed. The 

software framework used to program such a system would 

need to be ubiquitously adopted and should be designed 

in such a way that the programmer need not be concerned 

with the underlying system architecture. The software 

framework should, however, optimize compute and data 

movement to ensure that functions with large data 

TrendChallengeGrand Challenge Promising Technology

Figure 2.21: Roofl ine for AI/ML workloads22 (courtesy of Steve Pawlowski, Micron).
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footprints and few compute operations happen in-situ to 

the memory or storage system, while continuing to transfer 

operands to accelerators when it is optimal to do so. 

Modern server architectures consume on the order of ~KW, 

have total memory bandwidths on the order of 100GB/s, 

and hold total storage bandwidths of 10s of GB/s. These 

servers typically include one to four processors and 100s to 

1000s of DRAM memory dice. The internal bandwidth of each 

DRAM die in a modern DRAM design is on the order of 10s of 

TB/s, and harnessing this bandwidth local to the DRAM die 

would consume 10s of W per die. Reconfi guration of this 

system architecture with a focus on near-data computing 

in memory and a software framework to make it easily 

programmable represents an enormous opportunity. The 

system that currently traverses 100MB per second per 

watt might be able to traverse on the order of a TB per 

second per watt. If this could be achieved, it represents an 

energy effi  ciency improvement of well over 1000X.

For near-data processing to progress, a number of key 

technologies must be advanced, and signifi cant changes are 

required in data-center system architectures.

Software infrastructure

A ubiquitous software framework that lowers the barrier 

to integration of new near-data processing elements is 

required. This framework must be capable of optimizing data 

placement and data movement within the system.

Interconnects

High-bandwidth, low-energy interfaces are required to move 

data between memory, storage, CPUs, and accelerators. 

These interconnects and interconnect standards should be 

developed in such a way that they allow data movement 

directly among elements, rather than moving to a central 

processor then back out to a diff erent element as is 

done in systems today. Protocols running on top of these 

interconnects must ensure coherence and resilience.

System architecture

Modern server architectures were not designed with near-

data computing in mind and, as such, limit the possibilities 

of near-data computing in many ways. For example, data 

structures stored in memory in a modern server always span 

multiple memory dice. This data layout is determined by the 

CPU vendor and may be dynamic or confi gurable. Because 

of this, for in-memory compute to be possible, one must 

fi rst go to great lengths in software to ensure that all the 

operands for an operation are co-located in the memory 

die where they will be processed. Similar complications 

exist in storage architectures and fi lesystem abstractions. 

For near-data computing to become ubiquitous, new system 

architectures must be developed. The advent of cache-

coherent “far” memory and storage interfaces, such as the 

emerging CXL standard, is a small step in the right direction.

Near-Data processing elements

For near-data processing to be realized, near-data processor 

architectures must be developed. Numerous examples 

of such architectures can be found in industry today, but 

upon closer examination, it can be seen that these designs 

are greatly hindered by having to fi t neatly within today’s 

server and data-center architectures. Near-data processing-

element design must be designed in the context of a 

full-system design that embraces near-data computing, 

along with the wealth of other heterogeneous computing 

operations becoming commonplace today.

Finally, it should be recognized that the diverse talent 

required to make this industry-wide revolution happen have 

yet to enter our higher education institutions. A focus on 

developing talent through curricula that explore and teach 

the concepts of near-data processing will surely bring 

innovation in both system and software architectures and 

in the applications that run on such systems. We cannot 

yet imagine the future applications that will run on an 

optimized near-data-processing data center.
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2.5. Memory Technologies 
Present and Future 
Overview and needs

The current mainstream memory technologies—SRAM, 

DRAM, and NAND Flash—were established from advances 

in semiconductor technology. Each has its respective 

market dominance because it fi lls a technological need 

while simultaneously lowering power and manufacturing 

costs. These incumbent memory technologies have proved 

exceedingly hard to supplant with emerging memory 

technologies—the latest, NAND, was created in the late ‘90s, 

and the oldest, SRAM, came from research in the early ‘60’s. 

Over the decades, many new memory-device technologies 

have been investigated, but none have risen to the forefront 

as serious challengers to the incumbents.

However, all three of the mainstream memories are now facing 

scaling challenges in bit density and/or performance. In order 

to continue performance gains in these technologies, multi-

level cell (MLC) and 3D capabilities are being exploited. NAND 

Flash has managed to go both MLC and 3D monolithically, with 

vertical strings pushing over 100 layered cells, while DRAM is 
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being stacked heterogeneously using through-silicon-vias (TSV) 

to make high bandwidth memory (HBM) modules. 

Multi-function CPU core architectures and parallelism have 

unleashed more power effi  ciency in computing and thus 

performance, but the increased performance has now 

become limited by the bandwidth to and from the memory. 

Even as memory continues to make great gains in capacity, 

and to a lesser extent in internal bandwidth, the ability to 

use that memory has become bottlenecked. Memory resides 

outside the compute core, consuming power for access 

and creating latency, which aff ects scenarios referred to 

as the “I/O power wall”—where energy is interconnect-

dominated—and the “memory wall”—where bandwidth is 

pinned and locality constrained (Figure 2.2224). Technologies 

are needed to both enhance memory density and reduce 

memory power consumption.

The growing interest in new computing paradigms is 

looking with excitement at the new features that emerging 

memory devices can provide. Great strides have been made 

of late in new methodologies for machine learning (ML) 

and artifi cial intelligence (AI). These processing techniques 

often rely on parallel, nonlinear methodologies, such as neural 

networks, that lend themselves to weighted memory-cell 

implementations, like those that can be made with fi ne-grained, 

multi-level cell capabilities and analog-like behavior. 

More effi  cient memory hierarchy

Quite a few cache-based strategies have been exploited to 

improve the memory latency and I/O power issues. Taking this 

further, with the use of extra, more tightly coupled layers of 

cache in the compute, memory hierarchy can reduce the need 

to go off -chip for memory access. Some emerging memory 

technologies have properties that make feasible new layers 

of cache, such as non-volatility and faster access than NAND, 

particularly magnetic RAM (MRAM), phase change (PCRAM), 

newer ferroelectric devices like the FEFET, and the large 

variety of resistive RAM (ReRAM). It must be noted, however, 

that even though non-volatile memory reduces bit movement 

(and the need for refresh in supplanted DRAM), the energy 

barrier associated with this persistence generally results in 

higher write energy that must be considered in the overall 

design (M. Mayberry, “The Future of Compute”, 2020 IEEE 

VLSI). Many of the emerging memories can be stacked in 

3D XPoint architectures, and such density gains can further 

improve performance. They are also being considered and 

implemented as SRAM replacements in mobile devices, largely 

for reduced standby power due to their non-volatile nature.

There are also performance gaps in memory beyond the 

compute architecture at the system level, as seen in Figure 2.23. 

In designing future systems, computing architects need to 

be more closely coupled to memory technology, guiding 

memory device and material-science-level research to fi ll 

hierarchy gaps. One could also envision the insertion of a 

very tightly compute-coupled layer in the memory hierarchy.

Figure 2.22: Energy from I/O and latency in moving bits back/forth are 
becoming limiting to compute performance gains24. (courtesy of Al Fazio, Intel)

Figure 2.23: Research adjacency: Memory technology research needs 
pairing tracks with systems research24 (courtesy of Al Fazio, Intel)
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Likewise, concurrent software enablement is critical, as 

it is software in operating systems and applications that 

move bits back and forth across the hierarchy.

Compute in-memory and near-memory

Systems architectures need to keep pace with societal needs. 

We are now transitioning to an age of what is deemed a "data-

driven economy." Growth in memory density has been a great 

enabler of this transition, and room for further enablement can 

come by better cache refi nement. But as the user demand for 

instantly accessible information continues to increase, memory 

access bandwidth still becomes a bottleneck, as illustrated in 

Figure 2.2425. This has spurred some researchers to investigate 

ways to redefi ne how memory is used in systems and to 

innovate ways to incorporate more novel types of memory. 

Looking more deeply at data access, the problem is not with 

the memory itself, but with the way it is being used. The 

solution could bring compute and memory closer together, 

creating new compute architectures that can be imagined as 

a progression of options, with increasing or tighter compute/

memory coupling. These options include: 

1. Inserting a “tightly” compute-coupled layer in the Memory 

Hierarchy (e.g. HBM);

2. Moving compute primitives into the memory die;

3. Moving compute primitives into the memory “core” (shown 

in Figure 2.25); and

4. Merging compute and memory with in-memory 

computation for Neural Network fabrics’ vector matrix 

multiply acceleration.

These may look to be separate solutions, but compute-in-

memory should be considered as a continuum from compute-

in-registers to compute-in-memory.

These new manners to enhance compute take advantage 

of reduced external (to CPU) bandwidth requirement and 

employ more internal memory parallelism for compute. 

Similar to the introduction of GPU, TPU, and FPGA 

accelerators in data centers, in-memory computation 

for neural fabrics can take such systems even further by 

exploiting the unique physics of “emerging memory.” 

Examples of this include resistive, magnetic, and fl oating-

gate technologies for summation (threshold) and sigmoid 

(triggering) behavior, as well as analog “weight” non-volatile 

storage. Bridging the gap between digital and analog with 

more analog-like memories (like ReRAM) may provide 

synergistic gains.

Figure 2.24: How current architectures bottleneck more 
effi  cient compute by isolating memory from compute25 

(courtesy of Greg Atwood, Micron Technology)

Figure 2.25: a) Memory is currently BUS-bandwidth constrained, and b) moving compute primitives into the memory 
core could alleviate memory bottleneck through reduced data movement25. (courtesy of Greg Atwood, Micron)
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Embracing nonvolatile memories (NVMs) for compute comes 

with signifi cant tradeoff s. When compared to traditional 

volatile memory like DRAM, emerging NVMs have advantages 

of low standby power, resilience to unexpected shutdown, 

and instant-on capability, countered by disadvantages such 

as high write latency/energy, limited write-cycle endurance, 

and vulnerability to security attacks. To extract the full value 

of persistence for computing will require large investments in 

enabling software development and design for security.

Emerging memory

In looking to exploit new memory and system architectures, it 

is benefi cial to understand the “emerging memory” contenders 

and how they might fi nd favorable uses in memory and compute.

Spintronic RAM26 

More than a decade has passed since giant tunneling 

magnetoresistance was discovered in Fe/MgO system, 

imparting a reasonably large switching resistance (>100%) 

and providing for spin-driven electrical switching. These 

attributes deliver the basis for a magnetic random-access 

memory based on spin-transfer torque (STTRAM). Since 

magnetism is a collective state, magnetic orientation can 

theoretically be switched with low energy. With these 

combined attributes, STTRAM has been considered for use 

as a “universal memory” that rivals the speed of SRAM and 

the density DRAM. What seemed to be possible, however, 

has not been achievable to date. The spin torque switching 

phenomenon has yet to be harnessed in such a way as to be 

effi  cient enough to switch at low current, and the small read 

margin makes sensing diffi  cult. Scaling has also been an issue, 

limiting devices to around 30nm for existing designs with a 

perpendicular magnetic orientation. New structures using 

perpendicular shape anisotropy have recently been proposed 

and experimentally demonstrated to off er scalability down to 

sub-10 nm dimensions. 

Falling a bit short in its promise of universality, STTRAM 

has become one of the leading candidates for embedded 

memory applications, especially in the mobile realm, due to 

its fast-switching, low-power and non-volatile performance 

characteristics. Magnetic states are also radiation-tolerant for 

military and space applicability. To date, using STTRAM as a 

storage class memory has been limited by the large current 

densities necessary for switching, sensitivity of the tunneling 

junction to variation, and the small read margin, all of which 

serve to hinder high effi  ciency in large-array implementations.

Some recently discovered magnetic phenomena may help to 

curtail some of the shortfalls of STTRAM. A current fl owing 

through a heavy metal was found to defl ect spins—the spin 

Hall eff ect—creating transverse spin-orbit torque (SOT) 

in an adjacent magnet. This switching method requires 

a three-terminal confi guration, which limits its density 

compared to other two-terminal memory elements. However, 

its fundamental advantages in speed, energy-effi  ciency, 

and endurance make a suitable candidate for embedded 

memories (cache) in leading-edge technologies. Presently, 

the amount of current needed to impart magnetic switching 

is not signifi cantly lower than that of spin-transfer torque, but 

alternative, more exotic materials like topological insulators, 

2D magnets, and 2D Weyl Semimetals hold promise for 

augmenting effi  ciency in SOT. Another magnetic coupling 

phenomenon manifests as voltage-controlled magnetic 

anisotropy (VCMA), which is the ability to harness a voltage to 

reduce the barrier for magnetic switching. Used in conjunction 

with SOT, or in a thermal activation regime, faster (< 1 ns) and 

lower current density magnetic switching may be achieved.

Emerging ferroelectrics memories27

Ferroelectric memories (FeRAM) are advantageous in that 

they can be written at a low voltage and power and at high 

speed, due to the collective nature of the spontaneous dipole 

moment. Up until recently, suitable ferroelectric materials for 

memory applications, typically lead-zirconia titanate (PZT), 

had dipoles that were only stable in fairly large groups. New 

momentum in ferroelectric memory development emerged 

in 2007 when ferroelectric properties were verifi ed in HfO2, 

later confi rmed to be a strained, orthorhombic phase, stable 

at below 10 nm. As such, HfO2-based memory cells have the 

potential to overcome the classical FeRAM scaling issue.

Ferroelectric memories can be used in a variety of forms 

(Figure 2.26), including as traditional FeRAM, where it serves 

as a capacitive element, in a three-terminal FET (FeFET), 

and in a switchable resistance-tunnel junction (FTJ). Of 

these three technologies, the FeFET has garnered the most 

interest. Unlike the FeRAM, the read is not a destructive 

process. Moreover, it can be scaled in a planar confi guration, 

and its three-terminal structure lends itself to integration as 

both a memory and a logic element. This logic compatibility 

and functionality may serve to lift it above the competition 

as a suitable compute-in-memory element, especially for AI, 

which needs dense logic near the memory.

Phase change and resistive memory28

Diff erentiation observed today in market applications makes 

back end of line (BEOL) resistive, non-volatile memories a 

valuable option to support or even replace off -chip Flash 

memory in some new architectures, such as cross-point 

(XPoint). Two technologies, PCM and ReRAM, are generally 
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amenable to such applications. PCM moves between an 

amorphous high-resistance state and a crystalline low-

resistance state, whereas ReRAM moves atoms or atomic 

vacancies to create or terminate a conductive bridge. Both 

phenomena allow for intermediate states, so multi-level cells  

(MLC) or pseudo-analog implementation is possible, either of 

which would be equally benefi cial for ML or AI applications. 

These two technologies are growing in maturity, thanks to an 

increasingly consolidated knowledge of the physics behind 

their functionality and consequential materials tuning for 

their reliability.

PCM is being used as part of 3D-Xpoint memory with a 

growing list of applications, primarily for high-end servers. 

Limited widespread adoption of PCM is related to relatively 

high current-to-switch and its tendency to have resistance-

drift with cycling over time, as well as electrical read (disturb). 

All this can be attributed to atomic redistribution/segregation 

under current-driven heating conditions during write and 

read. ReRAM suff ers from intrinsic stochasticity in switched 

resistance state, largely when switching from low (on) to 

high (off ) resistance states, known as RESET. These negative 

cell attributes in both PCM and ReRAM can be attributed to 

uncontrolled atomic motion at the nanoscale. These inherent 

variabilities in cell properties during use have been met with 

a variety of compensation strategies, including optimized 

sensing circuits, write algorithms, and advanced error 

correction (exemplifi ed for ReRAM in Figure 2.27). 

PCM drift, which can be exacerbated with scaling, can manifest 

in an inability to properly sense the cell state (too-low read 

margin) or stuck cells, generally limiting endurance to under 

106 cycles. Despite the diffi  culties in achieving high endurance, 

PCM is being implemented in the storage market and data 

centers. It’s also making inroads in accelerated gaming and 

graphics, as well as in automotive and military applications, 

due to better radiation and heat tolerance than Flash memory. 

ReRAM has yet to achieve any widespread applications 

Figure 2.26: How discovery of ferroelectric HfO2 has led to a resurgence in new ferroelectric 
devices that may be amenable to VLSI27 (courtesy of Stefan Müller, Ferroelectric Memory Co)

Figure 2.27: Illustration of error correction and/or write 
verifi cations schemes necessary to account for inherent 

stochasticity of ReRAM28 (Courtesy of Gabriele Navarro, CEA LETI)
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despite intensive eff ort in a very large variety of materials 

systems. This is largely due to the described stochastic nature 

of the switching phenomenon in these materials, which leads 

to high intra- and inter-cell variability. This variability must be 

compensated for by innovative circuits, architecture, software, 

or, more hopefully, with materials innovations that greatly 

dampen the stochastic inconsistency.

Selector devices for cross-point (X-Point) memories

A selector, or access device, serves to isolate a memory cell in 

an array and allows for it to be accessed and turned on and/

or off , depending on implementation. It improves signal-to-

noise ratio, as well as memory-access disturbance immunity. A 

selector in a cross-point (also known as a cross-bar) memory-

cell array is a two-terminal switch serially connected to a 

matching storage element so the memory resides on top 

of the selector, integrated at the crossing point of a pair of 

connecting metal lines, thus allowing for memory arrays with 

high packing density. An eff ective selector technology is one 

that can be realized with a low thermal budget, such that it 

can be implemented in the backend of an integrated memory 

device, compatible with mainstream semiconductor technology 

featuring CMOS under array. This allows for 3D (vertical) deck 

stacking and relaxing the feature size requirements to achieve 

an eff ective end-run on the need for further scaling to get 

more memory in the same base silicon area. Many emerging 

memories lend themselves better to this geometry than Flash, 

a three-terminal device, and DRAM, a very tall device.

Many diff erent types of selector devices have been studied. 

Table 2.329 lists the attributes of leading select device 

candidates for various switching mechanisms. Some memory 

devices can function in a unidirectional manner, like PCM 

and some ReRAM, while others require bidirectionality, like 

STTRAM and other ReRAM. The needs for select device that 

all emerging memory candidates share are highly nonlinear 

I–V characteristics, good select-voltage window, fast-access 

speed, high endurance, excellent device-to-device uniformity, 

and thermal stability. It has been rather diffi  cult to identify 

a candidate that fulfi lls all the necessary criteria, even for 

a given memory device. More traditional thermionic-based 

devices are unidirectional in nature, and, while they can 

have good off  current, they are limited in the high-current 

density regime. Ovonic Threshold (OVS) and Metal-Insulator 

transition (MIT) selectors both off er high on-current and 

fast switching speed, but they don’t provide suitably low 

off -current, especially MITs, which limits larger-size array 

implementations. Filamentary switches provide ultra-low 

leakage but suff er from low on-current density, small voltage 

window, and poor reliability. Tunnel devices are diffi  cult to 

achieve high nonlinearity at reasonable voltages. Mixed ionic-

electronic current (MIEC) devices suff er from a rather small 

voltage window. As one can see, it’s diffi  cult to achieve all 

the necessary attributes in a select device suitable for a large 

cross-point memory array.

Key areas for focus and follow-on

Emerging memory technologies reviewed above are holding 

future promise to supplement or potentially replace some 

of the existing memory technologies and eliminate the gaps 

in the memory hierarchy, provided that existing limitations 

Table 2.3: Attributes of various identifi ed cross-point select device candidates29
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of each technology are addressed by ongoing research 

activities. To facilitate entrance of the emerging memories 

into the market and improve customer confi dence in new 

technologies, niche applications together with novel software 

and architectures will be important enablers.

Common development directions for all emerging memories 

include:

• Development of new materials, processes, and structures 

for enhanced speed, energy-effi  ciency, reliability, and 

scalability of binary and multilevel capable memory cells.

• Improved tooling (deposition, etching tools, etc.) to address 

scalability and device-to-device variations

• Software and architecture development to fully utilize 

benefi ts of a specifi c emerging memory, while mitigating 

some of the associated risks

In addition to common focus areas for future development, 

each memory holds its own unique challenges:

• STTMRAM

• Improve speed to approach cache memory (10-20 ns)

• Improve endurance (usually limited by MgO barrier 

breakdown) to 1e15 level

• Improve scalability to < 30 nm dimensions

• SOTMRAM

• Film and cell-structure stacks for fi eld-free operation 

and robust magnetic immunity

• PCRAM/ReRAM

• Address resistance drift, stochasticity of switching and 

wide cell-to-cell distribution

• Improve endurance to >1e10

• Increase speed and reduce power consumption

• FeRAM

• Reduce write voltage for fast write speed

• Improve endurance and retention

• Minimize ferroelectric imprint

• Solve write/erase disturb

Variability is a universal challenge in emerging memories. 

Establishing intrinsic variability limits of emerging memory 

cells along with research on materials and processes to 

minimize extrinsic variability components are key. 

• Research on memory systems for quantum computing

2.6. Present and Future Mass 
Storage Technologies 
Overview and needs

IDC research estimates that corporate data will continue 

to grow at a 40-50% compound annual growth rate (CAGR), 

doubling every two to three years. Global memory demand is 

estimated to exceed 100 zettabytes by 2040. Moreover, the 

world's demand for storage continues to grow exponentially, 

yet, evolutionary capacity gains are no longer able to keep up. 

Mass storage technologies will need to scale dramatically to 

meet the required capacity, while also continuously improving 

the price of storage. The ability to store data in an aff ordable 

way will allow for expansion of the storage marketplace. 

Existing mass storage technologies will continue to scale and 

provide the foundation for block-level mass storage through 

the next decade. However, data growth is outpacing the rate 

of technology advancement.

Recent advancements in solid-state-drive (SSD) technology 

that use semiconductor cells led to dramatic price declines 

over the last several years, with the potential for further 

declines in the next decade. As a result, SSD technology is 

encroaching into many traditional hard-disk-drive (HDD) 

segments, such as mobile and gaming. HDD technology is 

reaching a critical point where the technology roadmap (e.g., 

energy-assisted magnetic recording) has to emerge soon, 

or the entire storage roadmap will need to be re-evaluated. 

Over time, it is possible HDD will migrate to colder storage 

tiers, while also innovating to preserve performance for 

warmer storage tiers.

After a decade of consolidation, magnetic tape is potentially 

poised to inherit signifi cant growth in cold and archival 

storage, but only if tape technology advances ahead of 

alternatives. New storage technologies, such as DNA, off er 

three-dimensional storage that could potentially revolutionize 

mass storage, but the technology is many logs away from 

current storage technologies in both capacity and price. 

A growing number of use cases need exabyte-scale data sets. 

It is estimated that 1 exabyte of unreplicated data over fi ve 

years costs $100M, with a large footprint and signifi cant 

power and cooling requirements. Synchronization across 

multiple exabyte archives is eff ectively impossible today. 

As data volumes grow, stakeholders may need to discard an 

increasing proportion of available data. For use cases such as 

national security, this could limit key functions.
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Storage optimization with no single-storage solution

A single-storage solution cannot serve all segments. The 

future of storage is blowing “hot” (data that needs to be 

accessed right away) and “cold” (data that does not require 

fast retrieval, e.g., hours or days). At the cold end, DNA 

could replace or augment tape. Cold-optimized HDDs could 

also compete with tape. At the other end, there is a whole 

new category of very fast SSDs—3D Crosspoint is in the 

market as a storage-class memory. STT-MRAM is now used 

conventionally as an embedded memory in microprocessors. 

Each of these has a large enough market as the overall pie 

grows, and one or more will become mainstream by 2030. 

We will see the emergence of purpose-built architectures 

and new semiconductor and magnetic storage devices at the 

boundaries of existing market segmentations, all tailored 

to workload, power, and performance requirements. These 

technologies and solutions will provide opportunities for new 

growth vectors in the storage marketplace.

To achieve the lowest total cost of ownership, a balance 

must be reached in terms of the acquisition costs and the 

quality of service. This is achieved by balancing the various 

types of storage in the future, including DRAM, Flash, HDD, 

tape, and novel storage technologies. There is a right place 

and time in the data lifecycle for all these storage mediums. 

What is needed are intelligent data-management solutions 

that classify data and move it automatically by user-defi ned 

policies from expensive tiers of storage to economy tiers of 

storage. See Figure 2.28 for an illustration of storage tiers30.

Whole-system-level thinking

Some of the biggest opportunities are around whole-system-

level thinking to engineer end-to-end in terms of where to 

take concessions and where to optimize building large-scale 

storage31. For hyperscale cloud use cases, mass storage 

devices are just one component in terms of the optimization 

and design of an overall system. Thinking in terms of discrete 

mass-storage components aims for near perfection regarding 

reliability of local mechanisms to deal with failures. For the 

cloud, even if storage devices were perfect, the other sources 

of risk for a hyperscale cloud use case still require signifi cant 

countermeasures. Durability is a whole-system-level 

challenge. As a result, protecting against bit errors above a 

certain point may have diminishing returns. Instead, consider 

detecting and responding to those failures across an entire 

fl eet of storage devices. In this way, we can avoid thinking of 

individual storage devices as discrete components.

This is a diff erent approach to that of storage arrays with a 

fi xed form-factor device with annual failure rates (AFR) and 

expected risks on the hardware up front. Some cloud systems 

are designed diff erently, as a statistical model that is part of 

an active feedback loop. Component-level failure rates are 

monitored to actuate proactive steps to avoid durability failures. 

Figure 2.28: Storage tiering30 (courtesy of Peter Faulhaber, Fujifi lm Recording Media U.S.A.)

67



TrendChallengeGrand Challenge Promising Technology

If the rates of failure or other environmental factors in the 

system change in a way that is surprising, the model can adapt 

by scaling up replication systems to recover more aggressively.

Cloud providers 

take for granted 

that things will fail 

dynamically in a way 

that will vary over 

time and components. 

The systems need to 

adapt to this style 

of failure. Meeting 

a durability promise 

means reasoning 

about diff erent 

durability risks that 

go far beyond storage 

component failures 

(Figure 2.29). This 

approach allows cloud 

providers to achieve 11 9s (or more) of durability, as well as 

survive the complete loss of an entire facility within a region 

and remain well ahead of the steady-state failure of mass 

storage devices or power supplies.

Flash NAND SSD

NAND Flash’s low cost per bit with non-volatility with 

moderate performance, power, and reliability characteristics 

make it an indispensable part of the memory hierarchy32. 

In the past decade, NAND-based storage has successfully 

transitioned from a 2D to 3D implementation, breaking 

through capacity barriers and enabling continued cost-per-bit 

reduction. This new paradigm has simultaneously improved 

performance and power. Storage devices using NAND Flash 

are now ubiquitous, off ering new opportunities in the storage 

hierarchy. Flash is and will continue to replace other HDD 

categories (e.g., performance HDD). Cloud will use both Flash 

and HDD, not one or the other.  

Products based upon 128-layer NAND are becoming 

mainstream. High capacities in the 10s of TB are available in 

small form factors. Performance is capable of high bandwidth 

in the GB/second and read latency in the 10s of microseconds. 

NAND also has strong endurance with single-digit drive writes 

per day for mainstream 3-bit-per-cells PLCs. 

Cost reduction remains the primary interest, with increased 

bits stored per memory cell and process technology scaling. 

Performance improvement is focused on getting the most 

out of the NAND media and is targeted at what matters most 

based on the workload. Whole-density gains are starting to 

slow down—TLC (3 bits) to QLC (4 bits) was a 25% scaling 

benefi t, whereas QLC (4 bits) to PLC (5 bits) will be a 10% 

actual scaling benefi t.  Fundamental improvements in 

processes, tools, and materials will be required to continue 

delivering this level of process scaling into the next decade. 

Figure 2.30 illustrates that increased bits per cell will double 

the number of states for every additional bit per cell added, 

but the cost benefi t is diminishing.

This creates tradeoff s in performance, energy, and reliability. 

The only reason Flash continues to improve is because we 

multiple the small gains by very large (400) layers on top. 

The industry needs to rationalize this technology scaling 

capability with the capital required to ensure business 

viability33. For every 1% of bit growth, the capital required 

is growing 26% for Flash and 22% for HDD from 2014-2019 

(Figure 2.31). All the gains we get because of technology 

could be lost in the capital cost if we are not careful.  Capital 

intensity could potentially ruin the technology advancements 

in both HDD and NAND Flash.

Figure 2.29: Durability concerns for 
hyperscaler cloud31 (courtesy of Andy 

Warfi eld, Amazon Web Services)

Figure 2.30: Cost per bit analysis for SSD NAND32 

(courtesy of Mark Helm, Micron Technology)
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Hard Disk Drives (HDD)

Roughly every 10-20 years there is a major technology 

introduction that creates an infl ection point in HDD areal-

density growth34. Why is this important? These infl ection 

points signifi cantly reduce the cost of storage and play a big 

role in enabling all the data-hungry applications in our future. 

For example, 20 years ago, magnetoresistive readers fueled 

10 years of areal-density growth before it started to slow. 

Then, around 2005, perpendicular recording fueled the past 

15 years of growth with a 10x improvement in areal density.  

Perpendicular recording is also starting to slow down. More 

recently, shingled magnetic recording (SMR) technology 

has been introduced, which enables up to 20% density 

improvement leveraging existing perpendicular recording 

technology under tailored workload conditions. Limiters to 

HDD scaling include linear density (sub-10nm scale), track 

density (nm scale of servo positioning), and grains per bit 

(nm scale). HDD technology developed many unique wafer 

capabilities, and lithography dimensions are on par with 

leading semiconductor processing.

We are approaching one of these infl ection points, and this 

will unlock 10-15 years of robust areal-density growth (see 

Figure 2.32). Over the next decade heat-assisted magnetic 

recording (HAMR) will enable advances in magnetics for 

Figure 2.31: Capital Requirement for every 1% of bit growth for SSD NAND and HDD33 (courtesy of Siva Sivaram, Western Digital)

Figure 2.32: HDD areal-density gains over time, 1990-202534 (courtesy of John Morris, Seagate)
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large and important markets34. HAMR 

enables HDD technology to write 

smaller bits on higher coercivity media 

on a glass substrate. After cooling, 

the grains are very stable and not 

switchable by the head fi eld alone. 

This whole process occurs in under two 

nanoseconds.  

HAMR will enable HDD to continue 

to supply >90% of the demand for 

mass-capacity storage. It is unlikely that 

business-critical HDD will be outpaced 

by Flash. For many storage classes, a 

number of functions are handled above 

the physical device’s storing data, such 

as compression, de-duplication, and 

erasure encoding. This allows physical-

mass storage devices to focus on raw-

storage effi  ciency in terms of dollars 

per terabyte. Cooling and power costs 

of storage tiers are minimal compared 

to compute nodes.

Magnetic tape

Magnetic tape is one of the oldest 

storage technologies used today 

at scale30. It off ers the lowest total 

cost of ownership with the longest 

(coldest) retrieval times. The current 

LTO Roadmap specifi es Generation 12 

at 144 TB native capacity and 360 TB 

compressed. LTO-12 is expected around 

2027 and certainly before the end of 

the decade30.  

Achieving higher capacity and better 

TCO in magnetic recording is all 

about areal density. IBM and Fujifi lm 

demonstrated the ability to get to 123 

billion bits per square inch in 2015, 

which would equate to a tape cartridge 

capacity of 220TB using Barium Ferrite 

(BaFe). Beyond Barium Ferrite, Fujifi lm 

is working to commercialize a new 

magnetic particle that can store up to 

400 terabytes, or 22 times more than 

LTO-9 capacity. This new magnetic 

particle is called “Strontium Ferrite” 

(SrFe) and has magnetic properties that 

are even better than Barium Ferrite. 

Fujifi lm believes this new particle technology can be applied beyond LTO-10 for 

cartridge capacities of 400TB or more by 202930.

The evolution of magnetic tape particles started in 1994 with legacy metal particles, 

followed in 2006 by Barium Ferrite; Strontium Ferrite is expected for 202530. This 

progressive reduction in particle size enables higher areal density and higher-

capacity cartridges. Fujifi lm is also working on the next magnetic particle beyond 

Strontium Ferrite that the company calls Epsilon Ferrite (ε-Fe2O3). This technology 

is enabled by Focused Millimeter Wave-Assisted Magnetic Recording (F-MIMR). 

Fujifi lm expects Epsilon Ferrite to deliver up to a 1 PB tape media cartridge by 2035. 

Figure 2.33 compares Barium Ferrite, Strontium Ferrite, and Epsilon Ferrite.

DNA storage

Molecular information storage (MIST) is an emerging paradigm that uses polymers 

like DNA to encode information with higher bit density and greater stability than 

conventional storage media. Several eff orts to develop scalable MIST technologies 

are currently underway, including a large public-private partnership launched by 

IARPA in 201835.

Figure 2.33: Comparison of Barium Ferrite, Strontium Ferrite, and Epsilon Ferrite30 
(courtesy of Peter Faulhaber, Fujifi lm Recording Media U.S.A.)

Figure 2.34: Scaling Potential for DNA Synthesis Chips33 (courtesy of David Markowitz, IARPA)
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DNA storage should be viewed as a “right tool for the 

right job,” not a panacea that will replace other storage 

technologies like tape or HDD. The IARPA roadmap for DNA 

storage aims for tabletop DNA storage devices that can 

achieve a TB-per-day write and read workfl ows for $1,000 

in resource cost (see Figure 2.34). This achievement will 

fundamentally de-risk this technology stack for future scaling 

and commercial product development.

Commercialization of DNA storage will be possible in six years 

to satisfy use cases that require extreme media longevity. 

There are several use cases in the U.S. national security 

community that have this requirement, so it reasonable to 

expect the U.S. government will be among the fi rst customers 

of these fi rst-generation devices. Within 10 years, IARPA 

sees second-generation devices that satisfy extreme scale, 

resource effi  ciency, and fast-parallel search. IARPA is focusing 

on getting the fi eld on this path. Executing on the roadmap 

will require public and private partnerships35.

Key areas of focus and follow-on research

SSD NAND

• Increasing bits stored per memory cell will require 

improvements in processes, tools, and materials.

• Addressing the need to keep scaling the technology with 

business viability, given the increasing cost of adding bit 

growth.

• Balancing performance, energy, and reliability in SSD NAND.

HDD 

• Energy-Assisted Magnetic Recording (EAMR) is required to 

write smaller bits on higher coercivity media (requires heating 

the bits to high temperatures followed by a rapid cooling).

• Balancing areal-density gains with IO performance through 

solutions like multi-actuators.

• Adding platters in the same near-line form factors will be a 

challenge.

Magnetic tape

• New materials such as Strontium Ferrite and Epsilon Ferrite 

are considerations for future magnetic tape cartridges to 

increase areal density.

• Magnetic tape drives require read/write heads that are 

more complicated than hard disk drives (HDDs).

DNA storage

• Logarithmic improvements in DNA synthesis costs and 

capacity are required for hyperscale applications.

2.7. Summary—New 
Trajectories for Memory 
and Storage

Memory Grand Goal: Develop emerging memories and 

memory fabrics with >10-100X density and improve 

energy effi  ciency for each level of the memory hierarchy. 

Storage Grand Goal: Discover storage technologies with 

>100x storage density capability and fi nd new storage 

systems that can leverage these new technologies.

• Solutions are needed for the volume of liquid consumables 

required for DNA storage.

• DNA sequencing capacity needs to improve dramatically, 

including lower capital costs.

Overview

Radical new solutions in memory and storage technologies 

will be needed for future ICT. It is becoming increasingly 

clear that in future information-processing applications, 

synergistic innovations from materials and devices to circuits 

and system-level functions will be key to achieving new 

levels of bit density, energy effi  ciency and performance. 

Those innovations likely rely on yet-to-be-explored physical 

principles and structures (materials and interfaces).

Memory is an essential component of ICT, and further 

advances in computing are impossible without ‘reinventing’ 

the compute-memory system, including information 

representation, device physics, memory hierarchy 

architecture, and physical implementation. Traditional planar 

Flash nonvolatile memory can no longer be scaled below 

28nm, and alternatives must be able to support the rugged 

environment of the automotive market. Also, global demand 

for data storage continues to grow exponentially, and 

today’s storage technologies will not be sustainable in the 

near future due to the excessive material resources needed 

to support the ongoing data explosion. Thus, new radical 

solutions for data-storage technologies are needed. 

In summary, revolutionary changes to ICT memory and storage 

will be required soon. This will necessitate a cross-disciplinary, 

cross-functional approach to realize a solution space with 

multi-decade longevity to replace the current solutions.
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go to great lengths in software to ensure that all the 

operands for an operation are co-located in the memory 

die where they will be processed. 

• For near-data computing to become ubiquitous, new 

system architectures must be developed.  

• Near-data processing elements and near-data processor 

architectures must be developed.  

• Near-data processing element design must be designed 

in the context of a full-system design that embraces 

near-data computing, along with the wealth of other 

heterogeneous computing operations becoming 

commonplace today.

Emerging memory technologies

• There is room in the compute-memory hierarchy for 

additional cache layers that allow for implementation of 

emerging memory technologies, such as MRAM, PCRAM, 

and FeFETs. 

• Emerging memory implementations must consider 

methods/paths for scaling and 3D capability, including 

the select device for X-point implementations.

• MRAM needs endurance to attain > 1E10 with enhanced 

thermal stability, magnetic immunity, and low BER, while 

also reducing write current.

Variability is a universal challenge in emerging memories. 

Establishing intrinsic variability limits of emerging memory 

cells along with research on materials and processes to 

minimize extrinsic variability components are key.

• Research on memory systems for quantum computing.

Mass storage technologies

SSD NAND

• Increasing bits stored per memory cell will require 

improvements in processes, tools, and materials.

• Addressing the need to keep scaling the technology 

with business viability, given the increasing cost of 

adding bit growth.

• Balancing performance, energy, and reliability in SSD NAND.

HDD 

• Energy-Assisted Magnetic Recording (EAMR) is required 

to write smaller bits on higher coercivity media (requires 

heating the bits to high temperatures followed by a 

rapid cooling).

• Balancing areal-density gains with IO performance 

through solutions like multi-actuators.

• Adding platters in the same near-line form factors will 

be a challenge.

Research recommendations summary 

Memory technology for edge, mobile, and IoT 
computing

• Cell-level research goal: >10X improvement for key 

parameters aiming for 100-1000X improvement in power/

energy with enhanced reliability and lower cost/area. 

• SRAM: Disruptive area scaling solutions for SRAM in 

advanced nodes. 

• Identify new alternatives to 6T SRAM for on-chip code/

data: smaller area/bit, low leakage, baseline-process 

compatibility, and zero/low process cost adder.

• Non-volatile memories: Enable NVM in cutting-edge 

process nodes for edge, data center, and auto products. 

• Flash function replacements @ 28nm and below

• New capabilities needed with endurance > 1M. 

• Research on scalable multi-level emerging non-volatile 

memory cell solutions and related high-effi  ciency 

memory arrays.

• Sustainable denser 3D (non-monlithic or monolithic) 

integration of memory and logic: high memory capacity 

and bandwidth.

• Memory technology-aware algorithms to overcome write 

(latency, energy, endurance) challenges and to ensure error 

resilience.

Memory technology for HPC and data centers

• Software infrastructure: A ubiquitous software framework 

that lowers the barrier to integration of new near-data 

processing elements.  

• This framework must be capable of optimizing data 

placement and data movement within the system.

• Interconnects: High-bandwidth, low-energy interfaces are 

required to move data between memory, storage, CPUs, 

and accelerators.  

• These interconnects and interconnect standards 

should be developed in such a way that they allow data 

movement directly among elements, rather than to a 

central processor then back out to a diff erent element 

as is done in systems today.

• Protocols running on top of these interconnects must 

ensure coherence and resilience.

• System architecture: Modern server architectures were not 

designed with near-data computing in mind and, as such, 

limit the possibilities of near-data computing in many ways.  

• For in-memory compute to be possible, one must fi rst 
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Magnetic tape

• New materials such as Strontium Ferrite and Epsilon 

Ferrite are considerations for future magnetic tape 

cartridges to increase areal density.

• Magnetic tape drives require read/write heads that are 

more complicated than hard disk drives (HDDs).

Global trends in information storage are 

based on research by Hilbert and Lopez36, 

where a detailed inventory of all storage 

media was created (their data-storage 

inventory includes, among others, paper 

books and newspapers, audio and video 

tapes, photo negatives and prints, all 

types of digital storage etc.). A summary 

of their fi ndings is shown in Figure A2.1, 

from which several observations can 

be made and include: (i) the majority of 

data was analog before 2002; (ii) the 

analog data reached a maximum around 

2000 and steadily decreased afterwards; 

(iii) the amounts of stored analog and 

digital data became equal around 2002; 

and (iv) after 2007 the vast majority of 

information became digital—a trend that 

continues today.

Extrapolation of the digital line in Figure 

A2.1 provides projections for required 

global data storage. An important caveat 

is that the growth rate of digital storage 

(red line) is considerably higher than 

the total growth rate (blue line). This 

refl ects analog data dominating the total 

storage capacity for the majority of the 

measurement period. Extrapolation of 

the digital line in Figure A2.1 is treated 

as an upper bound for storage, while 

the extrapolation of the total storage 

capacity is used as a conservative estimate.

Appendix: Global 
Data Storage Trends

DNA storage

• Logarithmic improvements in DNA synthesis costs and 

capacity are required for hyperscale applications.

• Solutions are needed for the volume of liquid 

consumables required for DNA storage.

• DNA sequencing capacity needs to improve 

dramatically, including lower capital costs.

Figure A2.1: Timeline of analog and digital data storage 
including percentages of digital data with time36

Figure A2.2: Estimated and projected storage data/storage demand in 2009-2026, 
including a conservative estimate and an upper bound, and comparison with 

independent estimates of the data storage37 (solid and open red dots) 
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New Trajectories for 
Communication

Chapter 3

Seismic shift #3
Always available communication requires new research 

directions that address the imbalance of communication 

capacity vs. data generation rates.

The current state of the developed world is characterized by 

(almost) always-available communication and connectivity, 

which has a tremendous impact on all aspects of life. A 

manifestation of this is Cloud Storage and Computing. The 

ability to get data from anywhere and send it to everywhere 

has transformed both the way we do business and our personal 

habits and lifestyle. Social networks are a prime example. 

3.1. Executive Summary

However, the main concept of the cloud is based on the 

assumption of constant connectivity, which is not guaranteed. 

Furthermore, the demand grows daily for communication 

to become more ubiquitous as we become more connected. 

An alarming trend is a growing gap between the world’s 

technological information storage need, as just discussed, and 

communication capacities shown in Figure 3.1. For example, 

while it is currently possible to transmit all world’s stored 

data in less than one year, it is predicted it will require at 

least 20 years for the transmission in 2040. A global storage-

communication crossover is expected to happen around 2022, 

which may have a tremendous impact on ICT. Besides the cloud 

being used as storage for mass information, it is also heavily 

used for compute, specifi cally for AI application. Although 

edge computing for AI applications is a fast-growing trend, 

there are numerous applications that rely on cloud compute 
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capabilities. The explosion of information generated on the 

edge and processed and/or stored in the cloud will require 

tremendous growth of communications infrastructure.

Call for action

Radical advances in communication will be required 

to address growing demand. For example, the cloud 

technologies may undergo substantial changes, with 

emphasis shifting toward edge computing and local data 

storage. Broadband communications will expand beyond 

smart phones to immersive augmented reality, virtual 

meetings, and smart offi  ce settings. New capabilities will 

enrich user experiences through new use cases and new 

vertical markets. This requires collaborative research 

spanning a broad agenda aiming at establishing revolutionary 

paradigms to support future high-capacity, energy-effi  cient 

communication for the vast range of future applications. The 

DOE Offi  ce of Science published a report in March 2020 to 

identify the potential opportunities and explore the scientifi c 

challenges of advanced wireless technologiesi.

Challenges would include wireless communication 

techniques expanding to sub-THz region, wireless and 

wireline technologies interplay, new approaches to network 

densifi cation, increasing importance of security, new 

architectures for mmWave, and device technology to 

sustain bandwidth and power requirements, packaging, 

and thermal control.
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i  https://www.osti.gov/servlets/purl/1606539

ii The Decadal Plan Executive Committee off ered recommendations on allocation of the additional $3.4B investment among the fi ve seismic shifts identifi ed in 
the Decadal Plan. The basis of allocation is the market share trend and our analysis of the R&D requirements for diff erent semiconductor and ICT technologies.

3.2. Future Communication 
Technologies: Fundamentals, 
Challenges, and Application 
Drivers
Overview and needs

Over the past several decades, communication technologies 

have supported daily social life and economic activities and 

continue to increase in importance. While it is not easy to predict 

how communication technologies will develop in the future, it 

is worthwhile to explore best-case scenarios that are bounded 

only by what is technically possible. This chapter identifi es 

fundamental limits and provides an open forum for brainstorming 

unserved and future applications, as well as their corresponding 

implications for the semiconductor industry. Furthermore, new 

emerging communication solutions are discussed in the context 

of the application space they enable and the technology trends 

they may establish in energy, spectral effi  ciency, etc.

In many ways, technology is driving the future of human 

and machine communication. The amount of data that is 

being generated continues to rise exponentially, which 

means that we will have to come up with better ways of 

transmitting large amounts of data securely and without loss. 

The future will be driven by intelligent edge nodes based 

on high-speed devices, local processing, and local analytics. 

Edge computing is a very promising area of research because 

pulling intelligence to the edge could signifi cantly improve 

latency to the required level (i.e., below 1ms). There is a 

large window of the electromagnetic spectrum that remains 

Invest $700M annually throughout this decade in 

new trajectories for communication. The priority 

research themes are outlined in this Chapterii.

Communication Grand Goals:

• Advance communication technologies to enable 

moving around all stored data of 100-1000 zettabyte/

year at the peak rate of 1Tbps@<0.1nJ/bit 

• Develop intelligent and agile networks that eff ectively 

utilize bandwidth to maximize network capacity

Figure 3.1: The Global Communication Data Generation 
Crossover occurs when the data generated exceeds the 

world’s technological information storage (see Chapter 2) 
and communication capacities (see Appendix to this chapter), 

creating limitations to transmission of data. 
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untapped for communication1. Technology innovations are 

needed to leverage a vast, untapped spectrum. Innovative 

semiconductor technologies (e.g., RFSOI, FinFET, and SOI/

SiGe-based photonics) will provide process platforms for 

the future. To establish true ubiquitous coverage at lower 

costs, signifi cant technology advances are required in areas 

such as power amplifi ers at higher frequencies, channel 

estimation techniques, low-cost security for IoT devices, 

etc. An important topic is the application of AI/ML and 

exploring parallels between communication networks and 

neural networks. Security needs to be made a priority, with 

a focus on hardware, analog, and overall network security. 

Better mitigation strategies are also necessary for dealing 

with a network that is under attack. Finally, business 

model innovations are needed that adapt to the changing 

requirements and demands of the end user.

mmWave trends

With the introduction of 5G and the increase in the number 

of devices that communicate with each other, mmWaves 

are being explored and implemented as a key technology 

for two reasons. First, the spectrum is large and capable of 

accommodating the sizable number of devices requiring a 

communication channel. Second, most of these applications 

typically require communication among devices in close 

proximity, and mmWaves have proved eff ective in LOS 

communication. Cellular networks operate mostly in relatively 

narrow licensed bands below 4 GHz, where signals propagate 

reasonably far through free space, but where available 

spectrum is somewhat limited. Unfortunately, the bandwidth 

of available spectrum has a direct impact on the maximum 

data rate of the transmissions in these bands. According to 

the well-known Shannon-Hartley Theorem, capacity is a linear 

function of bandwidth. Early deployments of 5G mmWave are 

underway, but coverage is intermittent for now.

For mmWave systems, LOS directionality requirements are 

addressed through narrow beams with the need to track 

receivers. The mmWaves signals are absorbed by many 

common materials which limits their range and increases 

blockage probability. The device power consumption is very 

high due to the high sampling rate and large number of 

antennas. As network density increases, we need fi ber access 

of mmWave backhaul with improvements in edge services. To 

get power-effi  cient directional search, a conventional analog 

phased array can be used, which performs beamforming with 

RF phase shifters. It consumes low power because there is 

only one mixer+ADC per stream, but it can only search in 

one direction at a time. The most promising architecture is 

a fully digital phased array where all streams are digitized, 

and it can search in all directions simultaneously. It has low 

power consumption when utilizing low resolution ADC, and 

the dominant power is due to the local oscillator. Fully digital 

architectures have fast directional searches that are robust to 

blockages and have improved rate enabling multiple streams. 

THz and sub-THz are a largely unexplored spectra that 

provide massive bandwidth with a LOS link band greater than 

100 meters with active antenna arrays and modest power 

consumption. While 140GHz is prohibitive for smartphones, it 

may be a strong candidate for applications of robots, drones, 

and point-to-point links.

In summary, 5G off ers low latency and high peak rates for 

mobile edge computing and real-time control systems, but 

there are challenges, including MEC deployment, intermittent 

links, TCP adaptation, and multi-path routing2. 

Power aspects

Initial estimates are that 5G networks will consume over 3.5 

times more power than 4G networks and may need around 

2 to 3 times smaller cells to obtain full coverage at higher 

frequencies. Electricity already makes up about a third of 

a carriers’ average operational costs. In the past, to reduce 

power consumption, eff orts were made to improve the 

electronics, especially power amplifi ers, DSPs, and displays. 

TrendChallengeGrand Challenge Promising Technology

Figure 3.2: mmWave spectrum breakdown (adapted from2)
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More effi  cient antennas and renewable energy sources have 

been considered as well. Improvements in the effi  ciency of 

Radio Resource Management (RRM) and planning can also 

lead to a reduction in power consumption. These approaches 

should continue to be refi ned, but there are more innovative 

and potentially more eff ective ways that could be explored. 

Some innovations that have come up in RF include analog 

FFT, cognitive RF-AI circuit control, neuromorphic training 

with analog circuits, and avoiding cooling through distributed 

radio systems. Neural network techniques have been used 

to obtain near-optimal solutions to complex optimization 

problems in Radio Resource Enhancements.

Multi-objective optimization across networks can be used 

to optimize power while maintaining a target QoS. Some 

other avenues that have been explored in radio resource 

enhancement include power modulation, coding, and context-

based optimization of antenna resources and bands. Power 

could be reduced by viewing the whole system as a neural 

network, and employing adaptations that use multi-objective 

metrics to balance power while meeting QoS, as well as 

trading excessive degrees of freedom provided by the array. 

New research has shown that a neural network3 can be 

utilized to design/optimize a complete radio system.  

Future networks will be driven by mobile, P2P, V2V, M2M, 

and embedded applications, to name a few. For example, it 

is anticipated that by 2030 M2M will constitute 90% of the 

total communication traffi  c1. This is typically information-

centric/named-data networking, where data is named instead 

of using data containers. This directly secures data and fully 

utilizes wireless broadcast 

media. These will give rise to 

new communication needs 

like wireless, infrastructure-

free communication, scalable 

communication, and secure 

connection, which are 

particularly important for 

communications with random 

encounters.

Security aspects

The challenge with this 

exploding communication 

technology is that networking 

needs to be done with a 

potentially unlimited number 

of computing devices that 

would need autoconfi guration 

and auto-updates, basically working autonomously, with 

security as the key underpinning factor4. With the rise in 

IoT technology, security becomes even more critical. 

From a security perspective, IoT devices are much more 

heterogenous as compared with traditional devices, and they 

are mostly neglected. Automatic updates, that are already 

canonical in the desktop and mobile operating system space, 

require cryptographic primitives for resource-constrained 

devices, as well as building a PKI infrastructure to support 

trusted updates. Over time, the risk these devices pose to 

the Internet commons will only grow unless they are taken 

offl  ine. The recent Mirai attacks were primarily enabled due 

to the absence of security best practices in the IoT space, 

which resulted in a fragile environment that was ripe for 

abuse. This is a combination of device and communication 

problems, inseparable in cyberspace that is made of trillions 

of interconnected devices.

One of potentially disruptive approaches is to apply security 

measures that are bio-inspired, like from our immune 

system4. Any invader that breaches the physical barrier of 

skin or mucosa is countered by the immune system, and this 

system is capable of learning and adapting to protect us 

from multiple invaders. As a parallel, in information-centric 

networks, all entities should have: a semantically meaningful 

name that represents the context; produce keys; and a test 

anchor that issues certifi cates and installs security policies. 

Encryption at the data producer can prove useful, so that all 

data exchanges are authenticatable. Measures like a hardware 

pseudo-random number generator, TPM to safely keep private 
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Figure 3.3: Network enhancements (courtesy of Jeff rey H. Reed, Virginia Tech3)
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keys, and hardware crypto-accelerators can help in improving 

security. These trends also impact societal trends, as they 

empower end users by placing more control with them.

Emerging quantum communication technologies

Quantum technology is being explored because of its unique 

properties, and there are plans for a global fi ber network 

distributing quantum entanglement (Figure 3.4). Some of 

the devices that will be used are quantum repeaters(QR), 

switches(QS), interconnects, routers, and memories. Qubits 

are already being used for creating secure keys—random 

strings of 0s and 1s—that can then be used to encode classical 

information, an application called quantum key distribution 

(QKD). The fundamental issue is how to devise quantum 

memories, quantum repeaters, and quantum interconnects 

that carry entanglement/preserve coherence over secure coast-

to-coast networks. There are limits to extending entanglement 

and coherence that have not yet been quantifi ed. We need to 

determine the origins and limits on the control of decoherence 

and extend quantum state storage times to permit effi  cient 

interrogation, minimal error, and teleporting the quantum state 

to another link. Scalable quantum error correction and quantum 

algorithms are needed to exploit the quantum computing 

advantage and demonstrate quantum superiority in security, 

capacity, and machine learning5.

Key areas of focus and follow-on research

• Development of intelligent edge nodes with a focus on 

always-on devices, high bandwidth devices, and new 

modalities for security

• Technology innovation to enhance transmit power, 

especially in the untapped spectrum (100GHz-1THz)

• Innovative semiconductor process platforms to include 

RFSOI, FinFET, and SOI/SiGe-based photonics

Overview and needs

As 5G is now entering into the massive commercialization 

phase, it is important to identify trends, challenges, and 

research goals to support future developments, including 6G 

and beyond. This section identifi es key elements of future 

mobile communication and explores cellular networks, 

infrastructure, and subscriber alternatives to maximize 

system-spectral effi  ciency and minimize energy consumption. 

This section also includes analysis of transceiver components 

from antenna/modulation to demodulation/antenna against 

anticipated requirements for latency, data rate, and overall 

quality of service.

There is signifi cant interest on the diff erentiation in the 

portfolios of 5G and 6G, considering some of the challenges 

presented to 5G deployments. Expectedly, in 6G, there will be 

an even greater increase in area traffi  c capacity, connection 

density, peak data rate, and spectrum effi  ciency, and there 

will be a lowered end-to-end latency in service6. Stronger 

roadmap emphasis would be on industry verticals including, 

but not limited to, automotive, e-health services, energy, 

media and entertainment, and industrial automation7. 

The standardization partnership (3GPP) that produces the 

specifi cation for 5G has completed release 16 (Rel-16), which 

expands the features for low-latency and time-sensitive 

IoT communication. This has improved on Release 15 (Rel-

15), which featured limited bandwidth, laid stress on fi xed 

wireless connection and smart phones, and lacked native 

support data-driven learning. It is speculated that 6G could 

open up the 300 GHz to 3 THz range. The classifi cation of 

frequency bands of interest is highlighted in Figure 3.58.

3.3. Life After 5G 

• Solutions for cost-eff ective ubiquitous coverage  

• Security for communication designed into the hardware

• mm-Wave applications that overcome issues of blockage 

and power consumption, with massive data-rate support 

and ultra-low latency

• Exploring parallelism between communication networks 

and neural networks, using multi-objective metrics to 

balance power and quality of service, as well as radio 

resource enhancements

• Learning from biology to shape future communication 

systems, fi nding inspiration from immunity systems

• Merging innovations from quantum technologies into 

communication networks
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Figure 3.4: Quantum Internet fl ow
(courtesy of Fil Bartoli, NSF and Leheigh University5)
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6G trends

It is necessary to foresee the hardest challenges in extending 

to terahertz operation. The fi rst is the heightened path loss 

beyond 1 THz. Secondly, for the 1-10 THz band, only a few 

channel measurements are available thus far9,10. Thirdly, 

THz frequency is beyond the fmax of current CMOS and 

SiGe transistors, and this makes low-cost, high-power 

and low-phase-noise design diffi  cult11. As it becomes 

imperative to reduce power consumption and have eff ective 

link budgets, multiple antennas will become important to 

provide larger and more eff ective aperture. Also, as mixed-

signal devices like ADCs and DACs dominate the total power 

consumption at higher frequencies, greater eff orts will be 

made to develop architectures that will utilize ultra-low 

resolutions of AD converters.

A rethinking of overall system architecture is also required. 

A possible approach is that the Base-Station (BS) can work in 

synergy with User Equipment (UE) to synchronize, encode/

decode, and perform channel estimation6. In this approach, 

system design prioritizes good correlation properties of 

synchronization signals that are typically distorted by ADC 

and DAC quantization noise12. The new system must also 

better handle the channel estimation compromised by the 

low-resolution quantization so beam misalignment and error 

can be avoided.

Here, the convergence of EM wave theory, circuit theory, 

and information theory will help design physically consistent 

antenna and RF models, so a closer spacing in an array 

can provide more gain and broader bandwidth. Of course, 

implementation may be application-specifi c. For aerial 

vehicles, for example, this would mean better propagation 

modelling, MIMO modes, channel-tracking, and joint 

communication, while simultaneously managing interference 

and employing effi  cient sensor fusion and distributed 

computing. In medicine, it would mean better patient-data 

processing, replacing wires with cellular links and enabling 

secure links. Also, better situational awareness can be 

achieved through machine learning. For radar and mmWave 

applications, capturing refl ections from surfaces and running 

classifi cation problems for single-beam selection would be 

interesting13. In the process, this would also collect suffi  cient 

data at spatial, frequency, and temporal scales to enable 

ray-tracing for better channel consistency and elegantly 

incorporate mobility of scatterers and transceivers14. The 

challenge will be to obtain meaningful data sets at the 

appropriate spatial/frequency/temporal scales with 

enough detail but without a computational burden.

5G as stepping stone to future systems

To outline future requirements, it is important to revisit 5G 

as the communication innovation platform for this decade. It 

is estimated that the deployment of 5G wireless technology 

will yield an estimated $13.2 trillion in goods and services 

by 203515. One of the main features of 5G is its distributed 

functionality in terms of latency, i.e., low latency would be 

assigned for delivery of local value content and storage and 

AI-processing, while longer-latency service would be assigned 

to Big Data and aggregated value processing. As the roadmap 

in Figure 3.6 shows, the fi rst step will be delivery of mobile 

broadband using existing mobile frequencies and mmWave 

frequencies for increased bandwidth. Currently, while the 

Sub-6 service (i.e., 5G deployed on frequencies under 6GHz) 

may have better coverage than mmWave communication and 

is likely the most valuable spectrum, it isn’t easily available, 

resulting in lower data rates. Release 16 (Rel-16) also seeks 

to enable deployment in currently unlicensed spectrums. 

Rel-16 will help anticipate further requirements in Release 

17 (Rel-17), such as highly synchronized support for industrial 

IoT, which will provide access to network edge computing 

and automation. It is expected that Rel-17 will also expand 

operating frequencies to the 50-150 GHz range. 

Satellite-based broadband internet and mobile communication 

show promise to bridge the world’s digital divide. Photonics 

is another fi eld that will provide massive improvements to 

communication infrastructure because of its ability to transfer 
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Figure 3.5: New spectrum from 100 GHz to 3 THz presents opportunities for communication and imaging8

UHF – Ultra High Frequency
SHF – Super High Frequency
EHF – Extremely High Frequency
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data over long distances at the speed of light. 5G delivers 

the ability to expand network capacity and data rates while 

driving new use cases and application requirements, such as 

wide-area and IoT applications, enhanced mobile broadband, 

and ultra-reliable, mission critical applications. 5G internet 

goes beyond just smartphones to competitive gaming, VR, 

and smart offi  ces. Several factors of 5G implementation must 

be considered to address both user and operator challenges. 

Device complexity and cost, power consumption and battery 

life, network densifi cation, and network security and 

reliability are some of the integral challenges. 5G mmWave 

requires cell densifi cation due to high propagation path loss. 

Base station cell coverage hinges on two key characteristics: 

(1) high eff ective isotropic radiated power (EIRP), which gives 

greater TX coverage per cell, and (2) lower noise fi gure (NF), 

which gives greater RX coverage per cell. When the same 

coverage is maintained and operating power is lowered by 

using a smaller array, cooling requirements are lowered and 

the system has less weight in addition to lower operating cost. 

At higher EIRP and lower NF for base stations, we can provide 

greater coverage at the same array size. Fewer base stations 

are needed for equivalent coverage1.

Antenna arrays considerations

Emerging applications, such as augmented reality, holographic 

video, and wireless cognition, may pose further challenges to 

physical layer design. This places stress on existing Massive 

MIMO techniques that could provide solutions. Consider 

augmented reality, for example, which requires data rates 

of up to 3 GB/s/user. One of them is Ubiquitous cell-free 

Massive MIMO16,17, which refers to a distributed system that 

implements coherent user-centric transmission to circumvent 

inter-cell interference limitations and provides increased 

macro-diversity. Additionally, large intelligent surfaces can be 

employed to surround users with arrays for eff ective near-

fi eld operation. This can be coupled with Holographic MIMO 

with continuous transmitting and receiving surfaces.

Systems in THz band will revisit the concept of spatial 

multiplexing versus providing each user with his/her own 

spectral band. Diff erent approaches may be required to 

maintain the power aperture product as carrier frequency 

increases. Consideration must also be given to meta 

materials and new types of adaptive arrays. 

Baseband computation challenges 

There are a number of issues in relation to baseband signal 

processing that must be eff ectively addressed for successful 

5G and (prospective) 6G deployment. The increased 

bandwidth would mean a higher sampling rate. This would 

place stress on data converter design, which is coupled to the 

power requirements of the ADCs/DACs. There are also a large 

number of use cases in terms of performance, latency, form-

factors, and cost considerations. All this is compounded by 

the need for multi-band RF design and interfacing. Figure 3.7 

shows the shift in general purpose computing that is required 

to make this possible, including processing requirements that 

must increase by over three orders of magnitude. 

It is hoped that, when these are resolved, 6G will realize data 

rates in excess of 100 Gbps with sub -1 ms end-to-end latency. 

The expectation is that 6G will be a Multiple Radio Access 

Technology (Multi-RAT) that uses less power and has greater 

coverage on land, sea and, probably, in space. Developing 

higher-fi delity Software Defi ned Radio (SDR) then becomes 
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Figure 3.6: Release versions’ timeline for the deployment of 5G services (courtesy of John Smee, Qualcomm15)
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necessary, as pre-silicon design and verifi cation eff orts are 

becoming too costly for state-machine-based modems. 

Since scalability will be a key feature of future architectures, 

important trade-off s will be required in platform optimization 

between programmable section and hardware accelerators. 

The skeletal 5G/6G-oriented computing architecture is 

shown in Figure 3.8. Faster computing will further transform 

analog functionality into purely digital computing. Standards 

should also evolve and facilitate multi-layer densifi cation 

topologies. They should also establish multiple Power 

Effi  ciency vs Coverage vs Spectral Effi  ciency trade-off  points 

and support cross-layer optimization in terms of AI-based 

scheduling and interference management. Lastly, Integrated 

Access and Backhaul (IAB) should be evaluated more 

thoroughly as a means to control costs of ultra-dense 5G 

mmWave networks19.

Management of client-level data generation 

Cloud computing may not sustainably support the ever-

increasing generation of digital data. Local data, such as 

user-generated image, video, and speech, is best handled 

near the source to alleviate processing-power concerns. 

Figure 3.9 shows the progression over the past two decades 

of contributions towards structured productivity data, 

unstructured broadcast media data, and locally processed 

data, with the highest growth being in the last category. This 

complicates the frequency planning and the number of band 

allocation that a wireless system has to contend with. Also, 

as higher frequency carriers are used, cell density increases 

and this diversifi es the types of links, traffi  c services, and 

interference scenarios.
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CU – Centralized Unit
DU – Distributed Unit
RU – Resource Units

Figure 3.7: Evolution of general-purpose computing and DSP 
scaling for 5G and 6G (courtesy of Jayesh Kotecha, NXP18)

CPE – Customer Premises Equipment
CRAN – Centralized Radio Access Network

DUC – Digital Up Converter
DDC – Digital Down-Converter
DL – Downlink
FFT – Fast Fourier Transform
QEC – Quadrature Error Correction

DPD – Digital Predistortion 
UL – Uplink
iFFT – Inverse Fast Fourier Transform
ENC/DEC – Encoder/Decoder

Figure 3.8: 5G and 6G oriented architectures for supporting an increased number of device types (courtesy of Jayesh Kotecha, NXP18)
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A systems view is necessary to set new objectives given 

the foreseeable complexity. Network designs should be 

tailored to harvest and process data conducive to learning 

algorithms. Also, the structure of the networks should 

be tailored to be dynamic and self-aggregating, with 

opportunistic connections. More concretely, it is possible 

to transform signal processing in communication by 

combining the merits of diff erent AI-based approaches. This 

preserves decades of domain knowledge with appreciation 

for compensating model inaccuracies. Neural networks can 

assist a probabilistically directed graphical model, such as 

the Bayesian Network. Neural networks are inherently good 

for complicated unknown scenarios and exhibit robustness. 

But they suff er drawbacks in terms of the need for larger data 

sets and are, in fact, ineffi  cient for small-scale models. These 

fl aws can be remedied by a complementary Bayesian Network, 

wherein the variables and their dependencies explicitly 

represent model features and effi  ciently handle small data sets. 

Key areas of focus and follow-on research

• Develop strong roadmap with emphasis on industry 

verticals (e.g., automotive, e-health, energy, media and 

entertainment, and industry automation)

• Consider systems with high bandwidth utilizing large 

arrays in THz range; focus on changing aspects of PHY; 

establish wideband models for arrays; extend operations 

for THz, including new models for signal processing, new RF 

architectures, and new devices

• Expand utilization of AI/ML in wireless systems, data-driven 

models, integration into network; self-healing and self-

learning approaches

• Impact of network densifi cation and solutions for backhaul

• Cross-layer optimization, utilizing AI for scheduling and 

interference management

• New design principles for wireless networks, from data 

insight to action; security as key component of design; 

new performance metrics; expanded role of ad-hoc and 

mesh networks
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Figure 3.9: Progression in contributions of structured, unstructured, and 
user-generated local data (courtesy of Ariela Zeira and May Wu, Intel20)
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3.4. Fixed-line Communication 
Overview and needs

The exponential growth in data volumes that need to 

be communicated cannot be supported entirely through 

wireless technologies. In fact, the core of a mobile network is 

represented by fi xed-line optical fi ber communication, and the 

advent of 5G+ calls further increases optical fi ber-line capacity. 

It is necessary to identify the key value of and challenges for 

the fi xed/wireless convergence, including device, circuit, and 

system solutions. Improving network capacity would mean 

more spectrum (100 Gb/s per cell site), spatial reuse, and 

better spectral effi  ciency. To achieve this, a new digital fabric 

will be implemented that integrates existing access networks, 

newer cloud computing paradigms, and optical and fi xed-line 

data transfer infrastructure, among others (Figure 3.10). 

Trends and challenges of the fi xed/mobile 
convergence in the 5G and 6G era

Intense R&D is underway in newer technologies like low-cost, 

easy-to-install small cells22, spectral reuse with grids of beams, 

zero-forcing algorithms, and distributed Massive MIMO23. 

An interesting approach is to split the workload between 

edge computing and the radio site for all functionalities like 

analog signal processing, data converters, Common Public 

Radio Interface (CPRI), and distributed systems, as shown in 

Figure 3.11. In particular, for each shared functionality, there 

should be a good trade-off  between fl exibility and effi  ciency. 

On one hand, at a processing-hardware level, cloud-computing 

hardware consists of high-power CPUs, GPUs, and possibly 

other processor units capable of multi-functional pooling for 
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Figure 3.10: Proximal digital network for productivity and knowledge creation (courtesy of Peter Vetter, Nokia Bell Labs21)

Figure 3.11: Options for a functional split in architectures for a case study of 64 TX/RX Massive 
MIMO 100 MHz using 3-sectors and 16 Layers (courtesy of Peter Vetter, Nokia Bell Labs21)
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graphical rendering, AI, Machine Learning, and digital signal 

process. This allows for fl exible programming and dynamic 

instantiation of new functions, supporting so-called slicing-of-

network subsystems for multiple tenants. On the other hand, at 

the radio site, RF Integrated Circuits and System-on-Chip circuits 

have specialized programming and are low-power systems. 

A fl exible xHaul architecture is emerging that supports the 

most optimal functional split between remote radio units and 

central functions in the edge cloud24. It essentially consists 

of high-capacity switches and fi ber or wireless optical links 

interconnecting remote radio sites, 5G points of attachment 

(5GPoAs), and centralized-processing units.

In order to meet wireless capacity demands of users with 

smart devices, service providers are deploying “small cells” 

to benefi t from spectral reuse or allow for line-of-sight 

operation of mmWave frequencies. These can be “femtocells” 

or “picocells,” which are suitable for small businesses and are 

generally of low-power design. These are connected back 

to the network via fi ber-based options (a process known as 

backhaul). This allows for Gb/s connectivity as small cell sites 

are aggregated back to the core when mmWave technology 

is employed in combination with highly directive antennas. 

Figure 3.12 shows the trends and strategies in replacing direct 

wireline connections via distributed architectures for varying 

distances and data speeds, including Fiber to the Home (FTTH) 

and wireless small cells. The fi xed wireline infrastructure will 

increasingly be used to support the backhaul or fronthaul of a 

high density of small-cell future 5G/6G networks.

Scope for optical fi ber in 5G

The main drivers for higher throughput all-optical fi ber 

communication have been better Internet service and links 

between datacenters. The main challenges are the cost and 

bandwidth of components and the aff ordability of photonic 

integrated circuits. Fiber has been preferred for long-haul 

systems of greater 1000 km (submarine access), while RF 

options have been preferred for short mobile access of less 

than 1000 km. A typical coherent optical communication 

system consists of a transmitter and a receiver that convert 

digital bits to optical signals using electro-optical modulators 

(25-100 Gigabaud). The channel adds noise, so the signal 

requires amplifi cation at spatial intervals along the chain of 

propagation. Similar to RF transceivers, the optical receiver 

demodulates the encoded information in amplitude, phase, 

and polarization, albeit by mixing with laser, which acts as a 

local oscillator (LO). Higher-order QAM is transmitted with 

higher symbol rate and a greater number of channels and 

bits/symbol, as shown in Figure 3.13a. Figure 3.13b shows a 

generic scheme for multiplexing modulated laser subcarriers 

and subsequent demodulation with coherent receivers. 

Encouraging results using wavelength-division multiplexing 

(WDM) in single-mode fi ber show that capacities have been 

achieved recently of up to 115 Tb/s over 100 km using 250 

channels25 and 50.5 Tb/s over 17000 km using 295 channels26. 

While the standard transceiver rate today is 30 Gigabaud with 

QPSK modulation at 100 Gbit/s, it is hoped that faster rates 

like 80 Gigabaud with 256 QAM modulation at 800 Gbit/s 
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Figure 3.12: Various schemes for substitution of long-distance wireline access with 
Fiber to the Home (FTTH) and small cells (courtesy of Peter Vetter, Nokia Bell Labs21)
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gain more traction27. In the next fi ve years, it is estimated 

that even higher symbol rates of greater than 100 Gigabaud 

at 1.6 Terabit/s channel rate will be materialized in integrated 

photonics. Further, nonlinear equalization algorithms for 

higher order QAM signals28 coupled with constellation 

shaping will improve optical signal integrity. This will be 

aided by faster ADCs/ DACs in 10 nm ASICs with bandwidths 

exceeding 100 GHz. Collectively, if these targets are met, 

co-integrated CMOS and optics on the same Silicon chip may 

be more inexpensively realized.

Fiber links for low-energy frequency-stabilized 
coherent WDM

Datacenter ethernet switching speed, currently at 25 Tb/s29, 

is on a steady upwards march towards 100 Tb/s. However, 

fi ber links that keep datacenter interconnect capacity 

manageable will soon face fundamental scaling barriers 

in terms of power envelope, power consumption, and 

heat dissipation. There will also be diffi  culties encountered 

by optical I/O modules in tracking 100 Tb/s ASIC switching 

signals. An elegant Frequency-stabilized coherent optical 

(FRESCO) architecture30 is suggested to circumvent some of 

these issues. Here, narrow linewidth and laser stabilization 

technology developed for frequency standards and atomic 

clocks31 is adopted for coherent fi ber interconnects. Moreover, 

the laser used has continuous emission of a near-perfect single 

frequency of light with nearly zero frequency fl uctuations 

and very long coherence time. In this system, a shared 

ultra-stable, spectrally pure laser that drives an ultra-stable, 

spectrally pure, shared optical comb (TX + LO) is employed. 

This laser is modulated with an integrated silicon photonic 

coherent transceiver. The shared WDM optical source consists 

of a silicon photonic tunable laser, a micro-scale ultra-stable 

optical reference cavity, a Silicon Nitride Brillouin laser, 

and a nonlinear optical frequency comb (OFC) source. This 

arrangement facilitates coherent QAM modulation operating 

at 64 and 72 Gigabaud and under 64- and 256-QAM schemes 

and supports up to 1.6 Tb/s per wavelength on its frequency 

stabilized link29. The advantage of this new design is that it has 

no high-speed digital logic, no high bandwidth optical phase-

locked loops, no Costas loops, and no out-of-band carriers.

HPC for fi xed-line interconnection network fabrics

Traditional High-performance Computing (HPC) workloads 

are being written using the Bulk Synchronous Programming 

model (BSP)32. This model encourages message aggregation 

in order to maximize communication performance. However, 

this model faces challenges in data partitioning, system 

partitioning, network congestion, and job isolation. With 

the advent of data-centric computing, emerging workloads 

will now integrate numerical simulation with data analytic 

capabilities, e.g., graph analytics and machine learning that 

are asynchronous and require fi ne-grained communication. 

From a computing fabric perspective, it is recognized that 

the primary cost in terms of performance and energy is data 

movement. In current designs, about 1 nJ of energy per 64-

bit word is required for local interconnect traffi  c33. Current 

heterogeneous system architectures like ORNL’s Summit are 

challenged to implement traditional message aggregation 

strategies, because the data structures for the GP-GPUs 

are stored in a HBM2 memory pool, which is distinct from 

the data structures for the CPUs and their DDR4 memory 

pool. This leads to the need for higher message-frequency 

requirements for the system interconnection network fabric. 

The large memory capacity on each Summit heterogeneous 

compute node also leads to the need to support larger 

messages. To hide current latencies of a microsecond 

caused by message aggregation, a node-level architecture 

blending overlapping functionalities of communication and 
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Figure 3.13: (a) Higher-order QAM signals are transmitted by larger total capacity fi ber. (b) Lasers provide local oscillator frequencies 
that can be subsequently modulated and multiplexed for transmission (courtesy of Magnus Karlsson, Chalmers University27).

(a) (b)
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computation would try to increase message frequency. This 

may actually increase per-node memory, which could lead to 

larger messages, as in the schematic in Figure 3.14a. Another 

interesting challenge from a systems perspective is the desire 

to keep the network diameter low. As Figure 3.14b shows, 

a “Dragonfl y” topology may be the best option at present.

This must also employ high-radix switches and maintain link 

bandwidth to avoid impairing multi-hop communications. 

This wired network currently makes for high density 

communication between nodes.

Looking forward to the next generation, there is a need for 

high bandwidth in the range of 400 Gb/s/link.

Longer term, the priority research directions for HPC 

Interconnection fabrics include:

• Tighter integration between network, processing, and 

memory, in order to reduce latency, increase BW, and 

reduce energy

• Reconciliation of intra-node and inter-node network 

disparity to answer the question of being able to have a 

single network both inside and outside the network

• Technologies to develop richer network topologies 

(high-radix, high BW) that will be more robust to task/job 

placement and network traffi  c patterns

Single and multi-mode free-space optical 
communication links

Free-space optical (FSO) communication has the advantage 

of large bandwidth, unregulated spectrum, and high 

directionality34. However, it is encumbered with line-of-sight 

requirements and link outage from environmental interference. 

Classical pointing and tracking techniques and adaptive optics 

have helped ameliorate some of these problems.

An exciting novelty in the non-line-of-sight propagation (NLoS) 

communication paradigm is Light Fidelity (Li-Fi), illustrated 

by Figure 3.15. Its mode of operation of transmission and 

handoff  is similar to Wi-Fi. It has the advantage of operation 

in areas susceptible to electromagnetic interference and 

achieves speeds of up to 10 Gbit/s using RGB LED at 1.5 m. 

Further development lies in more effi  cient optical TDMA /

CDMA scheme realizations and better spatial frequency 

reuse methods.

Wavelength Division Multiplexing (WDM) has been making 

greater strides. In essence, WDM multiplexes multiple carrier 

signals (lasers of diff erent wavelength) onto an optical fi ber 

and enables bidirectional communications on this channel. 
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Figure 3.14: (a) ORNL Summit Compute Node node-level architecture to hide latencies (b) Dragonfl y Network Topology 
systems-level architecture to keep network diameter low (courtesy of Kevin Barker, Pacifi c Northwest National Lab32)

(a) (b)

Figure 3.15: Simplifi ed scheme for 
multiple access and handoff  using Li-Fi34

Data Stream
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Larger data capacity can be achieved by increasing the 

number of wavelengths with the use of Erbium-doped Fiber 

Amplifi er (EDFA).

Optical Angular Momentum (OAM) beams are also becoming 

popular for multiplexing. Unlike plane waves that propagate 

with constant phase along the wavefront, OAM propagates 

twisting phase-fronts corresponding to diff erent modes. 

As these modes are strictly orthogonal, data bits can 

be eff ectively twisted clockwise or anticlockwise and 

multiplexed or demultiplexed over a fi ber or free space. 

This concept shows promise in application of back-haul, 

datacenter and building-to-building communications, as the 

single aperture pair structure used eliminates the need for 

DSP. The caveat is that it requires careful beam structuring 

and link design.

Other optical methods are also being pursued, including 

satellite-to-ground quantum key distribution35 and laser 

communication for data relay services or optical backbone 

network (by the European Data Relay System).

Key areas of focus and follow-on research

• Co-integrated CMOS and optics solutions for next-

generation, aff ordable integrated photonics

• Very low-cost, low-power optical transceivers for line 

rates 100 Gb/s or even 1 Tb/s; more aff ordable fronthaul 

allowing for more centralized Flexible signal processing and 

higher density of small cells

• Low power consumption (mainly for thermal management 

reasons) for links in datacenters and HPC (IM/DD links 

today are more energy effi  cient and lower cost than 

coherent single mode (SMF)-based solutions but will have 

problems to go beyond 0.1 km and 100-200 Gb/s per fi ber.)

• Spatial division multiplexing (SDM) (Parallel fi ber links 

may have an advantage in ultra-long haul (submarine) over 

spatial multiplexing solutions.)

• New wavelengths and new amplifi ers critical for metro-

long-haul links (>100 km)

• High-capacity (> 1Tb/s /wavelength) links involving 

development of new optoelectronics with high bandwidths, 

new ADC/DACS for high-throughput DSP (ASIC-based) 

solutions, and algorithms to fi t those

• Tighter integration between network, processing, and 

memory, in order to reduce latency, increase BW, and 

reduce energy

• Technologies to develop richer network topologies 

(high-radix, high BW) that will be more robust to task/job 

placement and network traffi  c patterns

3.5. IoT and M2M Communication Concepts 
Overview and needs

The current human-centric communication is evolving 

into machine-centric communication. This evolution is 

seeing exponential growth, which will be manifested by a 

dramatic increase in the number of Internet-of-Things (IoT) 

and Machine-to-Machine (M2M) communicating devices. 

While many technologies are characterized by the specifi c 

nature of applications or architectures, a wide variety of 

devices, networks, and applications defi nes IoT. This rich 

diversity consists of a variety of applications, from health- 

and wellness-related wearable devices to autonomous and 

complex industrial control systems, and from a localized 

network of interconnected machines to a large slew of 

sensors connected over wireless. IoT applications and 

devices will be central to advances in computation (AI-ML) 

and communication technologies (5G/6G) in the years and 

decades ahead, both in terms of driving requirements for 

them and enabling faster adoption. A number of challenges 

exist in effi  cient development and adoption of IoT systems in 

terms of device development, coordination of communication 

protocols, reliable and high bandwidth networks, and 

security. This section highlights these challenges and sheds 

some light on approaches to address them.

Exponential population growth, a rise in urbanization, the 

need and demand for transportation and connectivity—all 

powered by limited natural resources—are placing a lot of 

stress on our infrastructure. Technology will enable us to 

optimize our resources and make us more effi  cient, safer, 

and healthier. A new era is approaching with distributed 

intelligence at the edge. Rather than being connected to a 

single device, all devices are untethered, giving them wide 

coverage and making them reconfi gurable and fl exible. 

This enables new applications like personalized electronics, 

wellness/health, manufacturing, transport, retail, and fi nance. 

These characteristics are also essential for truly autonomous 

vehicles and robots. Data analytics, inference, and modelling 

will drive large amounts of data transfer, and next generation 

connectivity will unlock the full potential of artifi cial 
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intelligence and machine learning. Driver applications are 

diversifying, and custom silicon is needed for optimized 

performance across a diverse set of applications with 

various demands. This calls for new design techniques, EDA 

methodologies, and reuse. Semiconductors are being used in 

applications that they have never been used before, giving 

rise to new challenges across the industry.

The current focus is on enhancing mobile, broadband, and 

fi xed wireless access, with defi ning network characteristics 

that include higher data rate, smaller cells, new physical layer, 

and so on. The most important characteristics that enable 

IoT include low power and latency control. There is greater 

value when we include expanded application opportunities. 

Some applications will be addressed in 5G+ and the rest will 

drive new connectivity techniques36.

Mobile connectivity is increasingly becoming important and has 

multiple application drivers and user needs. Today’s capabilities 

are up to 100 Mbps, which is good enough for driver 

augmentation. Typically, 5G is now used by consumers, smart 

cities, and in industry verticals. Some of the performance 

targets are coverage (expected to be 20dB better than 

smartphones), ultra-low device cost, a battery life greater 

than 10 years, very high connection density (~1M connected 

devices/km2), reliable network, and bounded low latency. 

There is also commercial growth in massive IoT devices like 

wearables and broadband IoT devices where high performance 

is critical. However, the major application drivers for innovation 

are critical IoT devices like those in autonomous vehicles, 

traffi  c control, and smart grids. Another category of devices is 

used in industrial automation, such as collaborative robotics, 

advanced automation, and control.
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Figure 3.17: Cellular IoT connections by segment and technology (courtesy of Y.-P. Eric Wang (Ericsson)37)

Figure 3.16: Application drivers (courtesy of Ajith Amerasekera, UC Berkeley36)
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The vision of Industry 4.0 is a factory where all devices and 

end products are fully connected using fl exible and open 

standards. Cellular networks provide these capabilities 

and are the key enabler. The two major technologies that 

are being used are LTE-machine-type communication and 

Narrowband IoT devices. The future network migration 

involves spectrum re-farming and random-access network 

software upgrades. This requires narrowband built in forward 

compatibility and dynamic spectrum sharing. A few important 

considerations are small form factor, new frequency 

bands, power/energy management, device cost, network 

deployment and management, and reliability37. 

IoT for autonomous aystems

Wireless networks will be the enabling technology of future 

autonomous systems that will be deployed in factories, 

rescue missions, patrolling, etc.38 These autonomous 

systems depend on communication between machines that 

are more sensitive than humans to delays and errors. The 

traditional viewpoint is that ultra-high reliability and ultra-

low latency are needed, but an alternative view would be to 

look at the joint design of communications and control39. 

The control loops are designed to tolerate errors, and the 

communication system takes advantage of this tolerance to 

improve resource allocation. However, an autonomous system 

operating in a non-autonomous wireless network is not truly 

autonomous. The network itself must be autonomous by 

learning to communicate and learning to allocate wireless 

resources. Such allocation of resources is a complex 

optimization problem.

The optimization challenge can be circumvented by learning 

optimal resource allocation using machine learning models to 

generate simulated data40. There is some success in using fully 

connected neural networks in small-scale systems, but graph 

neural networks (GNNs) are the only solution that scales to large 

networks41. GNNs outperform known model-based heuristics 

and transfer within graph families. They can be trained offl  ine 

but executed online on a diff erent network, able to transfer 

to large graphs without retraining. The combination of joint 

design and learning techniques results in integrated wireless 

autonomous systems where the wireless network is itself 

autonomous, and the distinction between the autonomous 

system and the wireless communication network gets blurred.

In the context of industrial control, wireless autonomous 

systems take the form of several plants that share 

communication links, while an attempt is made to close as 

many control loops as possible within a target delay42. A 

joint design approach allows adaptation of communication 

reliability to the state of the plant. Plants that are close 

to instability get more bandwidth to achieve more 

reliable communication. A learning approach allows for 

reduced deployment costs and adaptability to varying 

plant confi gurations. In the context of communication 

infrastructure, wireless autonomous systems enable the 

deployment of mobile infrastructure on demand (MID), either 

to augment capacity in urban setting or provide coverage in 

rural settings where it may be unavailable43. Autonomous joint 

design of MID allows for joint reconfi guration of communication 

routes and physical positions. Autonomous learning of MID 

allows provision of rate guarantees with high probability, 

despite meager knowledge of channel models, as well as 

adaptation to avoid the typical rate dips of fi xed infrastructure.

As autonomous vehicles become more prevalent, we need 

better communication technology to handle the massive 

amounts of data that will be transferred between vehicles 

and over the network. A good candidate for this is mmWave 

because it has a large spectrum that can be used by 

multiple devices. In addition, it works well with line-of-sight 

communication. The vision is to have a combination of sensing, 

learning, communication, and multiband connectivity that 

supports V2X. The vehicles exchange sensor data with the 

sensing built into the infrastructure. It should also enable high-

data-rate infotainment applications and joint communication 

and radar. Both beam training and conventional channel 

estimation/tracking have high overhead with large arrays. 

The solutions are to exploit channel structure by making 

them as sparse as possible, exploiting channel statistics and 

spatial consistency, and using out-of-band information. We 

can also leverage mmWave base stations, which may aid both 

automation and communication. For example, it provides 

augmented sensing for vehicles, safety for vulnerable road 

users, and data for the government. This builds into a smart 

city infrastructure for the future44.

IoT security considerations

As the world becomes more connected, security is a 

signifi cant concern. The number of attack points increases, 

and it is necessary to create new security measures and 

standards. It is expected that by 2022, the number of 

connected IoT devices will reach $29 billion, with a market 

value of $1.2 trillion. Diff erent companies develop their IoT 

platforms for third-party developers to build apps to realize 

service and provision automation. Security and privacy 

measures are not keeping pace with rapid IoT growth. The 
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caused by high user density with many diff erent types of 

connectivity. Today it is addressed by a control of spectrum, 

techniques for avoidance, and fi ltering. This will need to 

be adjusted by active interference cancellation, learning 

collaboration, etc. Spectrum congestion is another issue that 

needs to be tackled by developing intelligent radio networks 

that collaborate to manage and optimize the spectrum in a 

heterogenous environment, and to provide autonomous and 

spontaneous collaborative intelligent radio networks that are 

driven by learning. These use techniques that include human-

robot interaction like game-theory, in combination with 

machine learning. 

Network reliability can also be improved by using relays 

that will faithfully transmit the data by overcoming fading 

with spatial diversity. Wired networks will also be of huge 

importance, with the use of more copper and the push to 

use optical fi ber networks with high data rates. Some key 

technology needs are in signal processing, where dynamic and 

static techniques for interference mitigation, management, 

and cancellation are needed and to produce low SNR signals. 

Mirai botnet attacks, which exploited a vulnerability in IoT 

devices that could have been easily prevented, compromised 

multiple devices and brought down a DNS provider. Basically, 

it caused an internet outage. The most critical security and 

privacy threats come from IoT platforms and their affi  liated 

applications. Individually, IoT devices may be secured, but 

they open up vulnerabilities while connected as a system 

for various applications. Incremental expansion of the 

systems or the applications expose new vulnerabilities. 

Peer interactions between connected devices also add 

to vulnerabilities. Unintentional insider threats rise with 

the scaled versions of IoTs, and unconventional usages 

of IoT devices will also introduce new vulnerabilities. 

Many vulnerabilities can be resolved by implementing good 

authentication practices like individual authentication, 

though it suff ers from scalability issues. The same is true of 

secure onboarding. Proximity-based authentication might 

prove eff ective, but it is susceptible to side-channel attacks. 

Another solution might be continuous authentication. 

Network-based detection can be used to detect suspicious 

behavior and incorporate user intention to improve accuracy. 

The main advantage of such a system is low overhead at host, 

as it is easy to deploy. Plus, a large number of devices can 

be monitored without introducing overhead and signatures 

not revealed by system-level approaches. Most suspicious 

traffi  c is transmitted with simple unencrypted HTTP requests, 

and the number of malware families is not huge. Variants of 

the same malware exhibit similar behaviors. The challenges 

lie in the components’ interaction, which leads to confl ict, 

repetition, and unforeseeable outcomes. There are many 

attacks that could happen at device, network, or application 

level, and these attacks escalate due to chains of interaction. 

To mitigate these attacks, a multi-layer IoT hypothesis graph 

must be created that characterizes system states at each 

layer and attacks (Figure 3.18)45.

IoT network challenges

Humans are increasingly becoming connected to the internet 

in the form of human computing, wearable computing, 

and symbiotic computing. For example, a mesh network of 

hubs forms robust communication skin around body, and 

hubs communicate locally with energy-frugal sensor nodes. 

The physical layer for last hop is optimized for location and 

channel, and the protocol stack is adaptively tuned to adjust 

to changing conditions and optimize robustness and energy 

consumption. There is a push to solve interference problems 
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Figure 3.18: Multi-layer system graph 
(courtesy of Prasant Mohapatra, UC Davis45)

92



Mesh networks require channel prediction and modeling in 

order to use machine learning and adaptive techniques to 

make the system more effi  cient. System design will require 

a power optimization perspective. Semiconductors will 

also undergo a major shift, requiring customized compute 

for machine learning, control and signal processing, and 

data converters for high speed with low SNR requirements. 

They will also play a role in high-bandwidth modulation in 

free space and plastic waveguides. Reconfi gurability and 

reusability will be major characteristics to look for. Silicon 

photonics for new architectures and scaling to 1000s of 

antennas will be necessary, in addition to new materials to 

fi lter signals above 10GHz. Also needed are new packaging 

methods for above 100GHz signals like that in wide 

bandwidth confi gurable antennas36. 

There is a push to understand how to make a “world without 

wires,” action that requires high bandwidth, highly reliable 

and ultra-low cost, and power for IoT. The projected IoT 

growth will stress the infrastructure, and multiple classes 

of IoT devices have very diff erent requirements. Ad-hoc/

3.6. Communication ICs in the Nanoscale Era
Overview and needs

Over the past half century, communications has benefi tted 

from a repeated cycle of a confl uence of market needs, 

technology capabilities, and industry organizational structure. 

Examples include:

• Insatiable demand to communicate voice, video, and data 

from anywhere at any time for convenience, personal use, 

or as a tool for work;

• Moore’s Law dimensional scaling, which has provided 

increased levels of computation throughput, faster and 

more accurate signal processing, increasing frequency 

response, enhanced energy effi  ciency, and higher levels of 

integration at each successive node; and

• Standardization of communication protocols, enabling 

open competition and creating scale that has resulted in 

new features, greater performance, and lower cost.

heterogenous connectivity is needed for local networks, 

in addition to self-organizing networks. The information 

age needs to be brought to the physical world, and system-

level thinking is necessary. Future IoT may utilize LEO satellite 

communication, and better energy harvesting research will 

benefi t smart phones and many other devices. New ways are 

needed for network and devices to meet so many diff erent 

requirements for IoT device classes and cellular devices.

Key areas of focus and follow-on research

• High-bandwidth, high-reliability solutions for autonomous 

systems

• System solutions for classes of IoTs: Massive IoT, Broadband 

IoT, Critical IoT, Industry IoT Capacity, High BW, reliability 

(autonomy), and low latency (autonomy)

• Security topics for IoT, including authentication of 

individual devices, proximity-based authentication, use 

of side channels for proximity estimation, and secure 

onboarding (scalability issues)

• Role of IoT in future wireless systems beyond 5G
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Figure 3.19: Source: Ericsson Mobility Report, Nov. 2019
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While there are many communications systems such as 

Zigbee, UWB, NFC, Bluetooth, WLAN, and other ad hoc IoT 

protocols, the focus here is on cellular 5G and 6G. Both base 

stations and handsets are considered, with the emphasis 

on RF and associated supporting computation. Each cellular 

generation has been introduced roughly at the beginning of 

each decade and has generally provided increased data rate 

(see Figures 3.19 and 3.20), improved spectral effi  ciency, and 

enhanced connectivity. Bringing us a step closer to ubiquitous 

coverage, these enhancements have driven higher frequency, 

wider BW, and improved linearity requirements for RF stages. 

Furthermore, the trend continues in complexity, as shown by 

the growing number of RF bands required to support cellular 

systems around the world (see Figure 3.21). 
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Figure 3.21. Global snapshot of allocated/targeted 5G spectrum (courtesy Jeremy Dunworth, Qualcomm46)

Figure 3.20. Source: Ericsson Mobility Report, Nov. 2019
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State-of-the-art cellular communications

While 5G has successfully launched, the mmWave (24GHz 

and above) bands are largely unused and require further 

development. As part of Release 17 of 3GPP, it is supporting 

bands up to 114GHz. Additionally, unlike previous generations 

of cellular, the technology underpinnings for 6G are undefi ned. 

One key technical challenge proposed/suggested for 6G is to 

extend beyond 100Gbps to 1Tbps, which places substantial 

demands on the baseband processing, RF devices, and 

the overall tradeoff s between communication-system 

planning and link budget. Although there is still much to be 

accomplished below 6GHz, this report will focus on mmWave, 

where substantial research is needed. Some of the key 

challenges over the next decade will be: advancing mmWave 

communications system architecture and cell planning; 

optimizing integrated RF and antenna designs; enhancing 

active devices for effi  ciency and gain; and new materials for 

innovating passive components, such as tunable fi lters and 

circulators for adequate performance at these frequencies and 

reconfi gurable antennas.

Understanding RF propagation and modelling of the channel 

in the mmWave frequency band is a critical element for 

system planning and communication component/subsystem 

specifi cation setting. Data collected by Nokia (see Figure 3.22) 

shows that, with a 28GHz carrier, a path loss of approximately 

30dB @250m that needs to be accounted for. Further, 

outdoor-to-indoor path loss is on the order of 25-40dB.

Extending the frequency above 28GHz creates even greater 

challenges due to higher path losses. Link demonstrations 

have been conducted at SRC’s ComSenTer (a collaboration of 

12 global commercial semiconductor companies and DARPA) 

utilizing chips capable of operating at 120GHz and delivering 

80 Gbps at 10 cm47. Further, the research team is targeting a 

module consisting of an array of elements both on the Rx and 

Tx side. This is capable of communicating over 10m, supporting 

8 users at 100 Gbps, and leveraging two polarizations, resulting 

in a total throughput of 1.6 Tbps. Even with this outstanding 

performance, massive densifi cation of the base station will be 

required, creating a business-case dilemma. It is likely that the 

only viable solution is to have the customer share in the cost 

of the infrastructure, much as is done today in the customer 

purchase of a WiFi Access Point.

Several key semiconductor device elements for mmWave 

operation include: a high-frequency technology; low-loss 

BEOL for optimized on-chip RF passive components and 

advanced modelling and simulation capability to account 

for layout-dependent eff ects; and transmission-line-based 

devices and cross-coupling. It is generally accepted that 1/3 

of fmax, ft is an upper frequency bound of operation that can 

tolerate process, voltage, and temperature variations, while 

still maintaining adequate gain. Scaling CMOS devices beyond 

20nm no longer improves these devices, as other limits due 

to prevailing gate and interconnect resistance result in a peak 

performance for fmax of approximately 450GHz48. For small 

signal RF operation, CMOS circuits have been demonstrated 

to support mmWave operation into the 100GHz range49. 

For silicon technologies, Si-Ge off ers higher frequency 

performance, higher breakdown voltage, and higher power 

out compared to CMOS, particularly at high temperatures. IHP 

has demonstrated a 700 GHz fmax DOT7 device50 that extends 

performance well above CMOS. Of all the PA devices, GaN 

stands out as off ering the highest Tx power, highest PAE (see 

Figure 3.23), widest BW, greatest power density, and highest 

reliability51. The primary challenge with these devices is a 

degradation in EVM due to the temperature-dependent, 

time-constant diff erences between the fi ll and release of 
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Both Tx and Rx blocks must be translated to or from the 

digital domain through a data converter. Wider channel BWs 

and increased linearity will place substantial demands on 

these blocks that already are power hungry.

Much like the radio was moved to the antenna to create a 

Remote Radio Head (RRH) to optimize power consumption of 

a base station, integrated antennas and antenna modules are 

being co-designed with the RFIC for the handset to minimize 

losses and optimize system performance in the handset at 

the mmWave frequencies46. Taking into account the system 

trade-off s, design constraints, and the need for increased 

levels of integration, many partitioning decisions need to be 

made. The challenge is to determine what is monolithically 

integrated versus “package” or heterogeneously 

integrated for a complete RFFE module for each of the 

handset and the base station53.

charge in traps caused by a lattice mismatch. Many process 

improvements have been explored in an attempt to reduce 

the lattice mismatch at the GaN/substrate interface, but a 

solution has yet to be provided. Moreover, the devices have 

not been shown to operate above 120GHz.

Building a highly effi  cient transmitter, particularly in the 

mmWave band, goes well beyond the device. It requires an 

optimization of the device, circuit, topology, architecture, 

and integration/signal processing. Well-defi ned models are 

fundamental to making these trade-off s. Digital Predistortion 

(DPD), Crest Factor Reduction (CFR), or Envelope Tracking (ET) 

remain challenges at mmWave for the handset. A scalable 

four-way asymmetric G conjugate matched reconfi gurable 

transmitter design has been shown operating across the 

range of 37-73 GHz, with power out varying between 16.3 and 

19.3dBm, with a peak drain effi  ciency of 40% that degrades 

(worst case) by 50% under backoff  conditions up to 10 dB52.
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Figure 3.23: A comparison Power Added Effi  ciency of 
several technologies operating at mmWave frequencies
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Key challenges for communication ICs

Looking toward 6G, the challenges are many. As thought of 

today, mmWave covers at least two octaves—that’s a lot to 

handle. The increasing demand for high-speed data pushes 

operating frequency higher. At the same time, propagation 

losses increase, requiring a densifi cation unheard of today 

and challenging traditional business-case models. We must 

continue to search for new non-traditional paths forward. 

For example, multipath used to be considered a problem, 

but it’s now a solution when utilized constructively with 

computationally powerful engines. Phased arrays are 

becoming practical to implement and are providing a means 

for capturing more information. Applications may emerge, 

driving IC requirements in the future. On the other hand, 

there is need to advance enabling technologies. A balance 

must be struck within the coming decade. 

In order to take advantage of mmWave technology, an 

organized and ambitious direction must be set. Key 

challenges identifi ed include:

• Improve channel models to accuracies comparable to those 

below 1GHz, as link performance is critical to system planning

• Data converters for infrastructure ZIF receivers supporting 

a multi-band 600 MHz half BW @ 50 mW

• Si-Ge based mmWave transmitters operating beyond 

1 W/mm2

• Handset implementable DPD, CFR, or ET for 28GHz and 

above, 400 MHz BW 5G NR

• For GaN devices, trap algorithmic linearization techniques 

to off set the impact due to dislocations at the GaN/

substrate interface, eliminating their dominance on Error 

Vector Magnitude (EVM) specifi cations—reduce from 2.5-

3% to below 1%

GaN devices and PAs extended to 200 GHz, operating at 

40dBm @ 30% PAE

• Reconfi gurable mmWave transmitters 20dBM/40% PAE

• Programmable PA matching networks

• Multiband beamforming

Key areas of focus and follow-on research

Broad technology areas have been identifi ed to address 

challenges outlined in the previous section. Proposals should 

support achievement of the Targets defi ned above. While not 

an exclusive list, some proposal topics are:

• New approaches and improved devices for mmWave regime 

(Circuits now operate much closer to fmax, ft, and many circuit 

techniques available to RFIC/RFFE designers in the sub-GHz 

regime do not scale to >24GHz.)

• Effi  cient digital beamforming approaches to improve 

network capacity

• Enhancements in mmWave channel models 

• Approaches to optimize SiP-based package approaches at 

mmWave

• EDA tools to include high frequency and thermal eff ects 

and high speed interconnects between devices

• Test methods to identify Known Good Die (KGD) in the 

mmWave regime 

• Test and repair strategies

• ML techniques applied to transmitters to improve linearity 

and off er simultaneous spectral agility and back-off  effi  ciency

• New materials and passive devices in the mmWave band for 

tunable fi lters, circulators, etc.

• Reconfi gurable transmitters

• Re-examination of underlying physics of communications

Radical advances in communication will be required to address 

growing demand. For example, the cloud technologies may 

undergo substantial changes, with emphasis shifting toward edge 

computing and local data storage. Broadband communications 

will expand beyond smart phones to immersive augmented 

reality, virtual meetings, and smart offi  ce settings. New 

capabilities will enrich user experiences through new use cases 

and new vertical markets. This requires collaborative research 

spanning a broad agenda, aiming at establishing revolutionary 

paradigms to support future high-capacity, energy-effi  cient 

communication for the vast range of future applications. 

The communication grand goals 

• Advance communication technologies to enable moving 

around all stored data of 100-1000 zettabyte/year at the 

peak rate of 1Tbps@<0.1nJ/bit

• Develop intelligent and agile networks that eff ectively 

utilize bandwidth to maximize network capacity

3.7. Summary—
New Trajectories for 
Communication
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Research recommendations summary

• Re-examination of underlying physics of communications

• Explore parallelism between communication networks 

and neural networks; use multi-objective metrics to 

balance power and quality of service; determine radio 

resource enhancements

• Learn from biology to shape future communication 

systems; fi nd inspiration from immunity systems 

• Merge innovations from quantum technologies into 

communication networks

• mmWave and beyond technologies—going from hype to 

universal deployment

• Massive MIMO systems with 1000 of antennas 

• New materials and passive devices in the mmWave band 

for tunable fi lters, circulators, etc.

• mmWave applications with massive data rate support, 

ultra-low latency; overcome issues of blockage and 

power consumption

• Consider systems with high bandwidth, utilizing large 

arrays in THz range; focus on changing aspects of 

PHY; establish wideband models for arrays; extend 

operations for THz, including new models for signal 

processing, new RF architectures, and new devices

• Technology innovation to enhance transmit power, 

especially in the untapped spectrum (100GHz-1THz)

• New approaches and improved devices for mmWave 

regime (Circuits now operate much closer to fmax, ft, and 

many circuit techniques available to RFIC/RFFE designers 

in the sub-GHz regime do not scale to >24GHz.)

• Effi  cient digital beamforming approaches to improve 

network capacity

• Enhancements in mmWave channel models 

• Approaches to optimize SiP-based package approaches 

at mmWave

• EDA tools to include high frequency and thermal 

eff ects; high speed interconnects between devices

• Test methods to identify Known Good Die (KGD) in the 

mmWave regime 

• Photonics 

• Innovative semiconductor process platforms to include 

RFSOI, FinFET, SOI/SiGe-based photonics 

• Co-integrated CMOS and optics solutions for next 

generation, aff ordable integrated photonics

• Very-low-cost, low-power optical transceivers for 

line rates 100 Gb/s or even 1 Tb/s (More aff ordable 

fronthaul allows for more centralized Flexible signal 

processing and higher density of small cells.)

• Low-power consumption (mainly for thermal 

management reasons) for links in datacenters and HPC 

(IM/DD links today are more energy effi  cient and lower 

cost than coherent single mode (SMF)-based solutions, 

but will have problems to go beyond 0.1 km and 100-

200 Gb/s per fi ber.)

• Spatial division multiplexing (SDM) (Parallel fi ber links 

may have an advantage in ultra-long haul (submarine) 

over spatial multiplexing solutions.)

• New wavelengths and new amplifi er critical for metro-

long-haul links (>100 km)

• High-capacity (> 1Tb/s /wavelength) links involving 

development of new optoelectronics with high 

bandwidths; new ADC/DACS for high-throughput DSP 

(ASIC-based) solutions and algorithms to fi t those

• Secure communications

• Security for communication designed into the hardware

• Security topics for IoT, including authentication of 

individual devices, proximity-based authentication, use 

of side channels for proximity estimation, and secure 

onboarding (scalability issues)

• System-level optimization from the network to the edge

• New design principles for wireless networks, from data 

insight to action; security as key component of design; 

new performance metrics; expanded role of ad-hoc and 

mesh networks

• Technologies to develop richer network topologies 

(high-radix, high BW) that will be more robust to task/

job placement and network traffi  c patterns

• High-bandwidth, high-reliability solutions for 

autonomous systems

• Impact of network densifi cation; solutions for backhaul

• Reconfi gurable transmitters

• System solutions for classes of IoTs, including Massive 

IoT, Broadband IoT, Critical IoT, Industry IoT Capacity, 

High BW, reliability (autonomy), and low latency 

(autonomy)

• Development of intelligent edge nodes with focus on 

always-on devices, high-bandwidth devices, and new 

modalities for security

• Role of IoT in future wireless systems beyond 5G 
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Appendix
Global trends in communication

Global trends in communication are based 

on research by Hilbert and Lopez54, where 

a detailed inventory of all communication 

mediaiii was created (the communication 

inventory includes, among others, 

postal service and newspapers, radio 

and TV broadcast, fi xed-line telephone 

and internet, mobile telephone and 

internet, GPS, etc.). Extrapolation of the 

communication inventory in54 provides 

conservative projections for global 

communication trends (Figure A1). 

Another scenario is based on the 

assumption of the prevalency of wireless 

communication with agrresive growth 

trend sustainable over long time. This 

model is compared to the Cisco data based 

on the past and projected communication 

capacity in 2012-2022 (orange dots) in 

Figure A2. At this point it is still unceretain 

which of the two scenarios will be realized 

in the next 20 years. In the current Decadal 

Plan, working documents the conservative 

trend is tentatively used.
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iii In the communication process, a medium is a channel or system of communication—the means by which information is transmitted between the sender and 
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Figure A1: Estimated and projected (conservative 
trend) global communication capacity in 2010-205054

Figure A2: Estimated and projected (aggressive trend) 
global communication capacity in 2010-2050 
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New Trajectories for Hardware 
Enabled ICT Security

Chapter 4

Seismic shift #4
Breakthroughs in hardware research are needed 

to address emerging security challenges in highly 

interconnected systems and artifi cial intelligence.

Today’s highly interconnected systems and applications 

require security and privacy for proper operation (Figure 4.1). 

Corporate networks, social-networking, and autonomous 

systems are all built on the assumption of reliable and secure 

communication but are exposed to various threats and 

attacks, ranging from exposure of sensitive data to denial 

of service. The fi eld of security and privacy is undergoing 

rapid fl ux these days as new use cases, new threats, and 

new platforms emerge. For instance, new threat vectors 

4.1. Executive Summary

through the emergence of quantum computing will create 

vulnerabilities in current cryptographic methods. Thus, new 

encryption standards resistant to quantum attack must 

be developed, with consideration given to the impact of 

these standards on system performance. Also, privacy has 

emerged as a major policy issue drawing increased attention 

by consumers and policymakers across the globe. Technical 

approaches to enhancing privacy include obfuscating or 

encrypting data at the time of collection or release.

In another direction, devices have permeated the physical 

world, and thus trust in these devices becomes a matter of 

safety. Security has therefore never been more important. 

Safety and reliability of systems need to consider malicious 

attacks, in addition to the traditional concerns of random 

failures and degradation of physical-world systems. Security 

of cyber-physical systems needs to consider how to continue 

to function or fail gracefully while under or after attacks. To 

do secure sensor fusion over time, intelligent algorithms 
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are needed that sift through contextual data to evaluate 

trust. This is a diffi  cult problem as contextual data has 

tremendous variety and quantity—the systems of the 

future are actually systems of systems with limitless 

possibilities for communication and signaling. For instance, 

cars can communicate with each other and with roadside 

infrastructure. Like humans, we need to augment systems 

with the intelligence to trust or not trust all they perceive.

Our hardware is also changing. Complexity is the enemy of 

security, and today’s hardware platforms are highly complex 

due to the drivers of performance and energy effi  ciency. 

Modern system-on-chip designs incorporate an array of 

special-purpose accelerators and intellectual property (IP) 

blocks. The security architecture of these systems is complex, 

as these systems are now tiny distributed systems where 

we must build distributed security models with diff erent 

trust assumptions for each component. Furthermore, these 

components are often sourced from third parties, implying 

the need for trust in the hardware supply chain. The pursuit of 

performance has also led to subtle issues in microarchitecture. 

For instance, many existing hardware platforms are vulnerable 

to speculative execution side-channel issues, famously 

exposed by Spectre and Meltdown. Driven by these problems 

and others, the future requires fundamentally new hardware 

designs with innovative security approaches.

The major workload of today is artifi cial intelligence (AI). 

Many security systems, for instance, use anomaly detection 

to identify attacks or employ feature analysis for contextual 

authentication. AI capabilities continue to increase, and 

applications for these trusted systems continue to grow. 

However, the trustworthiness of the AI for these 

systems is unclear. This is a problem not just for security 

systems but also for general systems with implicit trust 

assumptions, for instance, visual object detection in 

autonomous vehicles. Researchers have shown that small 

perturbations to an image can sway neural network models 

into the wrong conclusion. A well-placed small sticker on a 

stop sign can make a model classify it as a Speed Limit 45 

signi. Other applications of deep learning systems have similar 

trust issues: the output of speech recognition might be 

manipulated with imperceptible audio changes, or malware 

might go undetected with small changes to the binary. The 

brittleness of deep learning models is related to their famous 

inscrutability. Neural networks are black boxes with no 

i “What is adversarial machine learning?” by Ben Dickson–July 15, 2020 https://bdtechtalks.com/2020/07/15/machine-learning-adversarial-examples/
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Figure 4.1: Systems view of security1 (courtesy of Yiorgos Makris / University of Texas at Dallas)
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explanation for their decisions. Other important problems 

with neural networks are algorithm bias and fairness. 

Approaches are needed to make deep learning systems more 

trusted, explainable, and fair.

Finally, in the last decade, the systems that we must secure 

have become immeasurably more complex. The cloud has 

become the standard for outsourcing computation and 

storage, while maintaining control. We are still grappling with 

security challenges arising from the cloud—multi-tenancy, 

provider assurance, and privacy—while cloud off erings 

continue to increase in complexity. Clouds now off er trusted 

execution environments and specialized, shared hardware 

and software. At the same time, interest in edge computing 

is growing as we realize clouds lack the performance and 

privacy guarantees of nearby compute infrastructure. The 

heterogeneous nature of the edge implies that trust in edge 

service providers is a major issue and, of course, the security 

of IoT devices has plagued us for years. Developing security 

must be made easier for resource-constrained, often low-cost 

devices. Even if care is taken in the security design, diffi  culties 

arise from extreme environments, such as medical implants. 

To compound the problem, systems have become more 

complicated at every level. Modern system-on-chip designs 

incorporate an array of special-purpose accelerators 

and IP blocks—basically tiny distributed systems where 

distributed security models must be built with diff erent 

trust assumptions for each component.

Call for action

The pace at which today’s systems are increasing in intelligence 

and ubiquity is astounding. At the same time, the increased 

scale and complexity of these systems have forced hardware 

specialization and optimization to address performance 

challenges. All these advances in capability must go hand-

in-hand with advances in the security and privacy. Examples 

include securing weaknesses in the machine-learning or 

conventional cryptography, protecting privacy of personal data, 

and addressing vulnerabilities in the supply chain or hardware.

Security Grand Goal: Develop security and privacy 

advances that keep pace with technology, new threats, 

and new use cases. Examples include trustworthy and 

safe autonomous and intelligent systems, secure future 

hardware platforms, and emerging post-quantum and 

distributed cryptographic algorithms.  

i iThe Decadal Plan Executive Committee off ered recommendations on allocation of the additional $3.4B investment among the fi ve seismic shifts identifi ed in 
the Decadal Plan. The basis of allocation is the market share trend and our analysis of the R&D requirements for diff erent semiconductor and ICT technologies.

4.2. ICT Security: Fundamentals 
and Applications
Overview and needs

Standard cryptographic methods today off er security that 

meets the anticipated threats. In the future, with the 

emergence of quantum computing, standard cryptographic 

methods will be vulnerable to quantum attack. Additionally, 

applications requiring more sophisticated security features, 

such as distributed consensus, are growing in demand. At 

the same time, privacy has emerged as a major policy issue 

that is drawing increased attention by policymakers across 

the globe. Technical approaches to enhancing privacy include 

obfuscating or encrypting data at the time of collection or 

release, and more work is needed on algorithms that can gain 

insight from obfuscated or encrypted data while preserving 

individual privacy. Also, new encryption standards resistant to 

quantum attack must be developed, with consideration given to 

the impact of these standards on system performance.

Securing systems for future defense applications 

Secure microelectronics is one of the highest R&D priorities 

for the U.S. government, and for the Department of 

Defense in particular2. For example, the Air Force works to 

out-innovate adversaries and, to do so, must rely upon the 

commercial technology base. This creates challenges, as 

defense applications often sit outside the normal mode 

of operation for commercial products and have security 

challenges well beyond most commercial applications. 

Additionally, defense applications typically require 

the enhanced use of commercial technologies while 

integrating with non-commercial technologies. The 

dependency upon commercial industry for key components 

provides a special vulnerability for defense systems2. 

The military applications must take advantage of the benefi ts 

of commercial technologies, while also managing the security 

risks by collaborating with industry to establish risk-based 

frameworks for security across the entire lifecycle of a 

microelectronics system. These frameworks must analyze 

TrendChallengeGrand Challenge Promising Technology

Invest $600M annually throughout this decade 

in new trajectories for ICT security. Selected 

priority research themes are outlined below.ii
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Computing for threat intelligence

Cybersecurity has involved a continuous arms race throughout 

the history and evolution of computing, with adversaries 

taking advantage of security vulnerabilities, and defenders 

in a state of continuous catchup. This happened during the 

mainframe, PC, and web eras, and is now taking place in the 

cloud and mobile eras. The advent of artifi cial intelligence is 

creating even greater vulnerabilities, where AI will be pitted 

against AI. We must prepare for this future3. 

There are two dynamics where AI will be pitted against AI 

(Figure 4.3). The fi rst is where AI will be used to automatically 

employ multiple tools to attack defenses. Defenders will employ 

AI techniques to counter the rapidly developing AI attacks. The 

second dynamic is adversarial AI, where attackers will exploit 

vulnerabilities in AI models to fool or exploit AI systems.

AI-powered attacks will be more evasive, pervasive, and 

adaptive than any prior era of computing. For example, 

researchers at Endgame Systems have shown how malware 

could be evolved to evade security defenses. Recognizing the 

potential of AI-powered cyberattacks, DARPA created a Cyber 

Grand Challenge in 2014 to pit AI attackers against AI defenders 

with no human intervention. AI systems attacked other AI cyber 

systems while simultaneously defending against the attack of 

other AI systems. During the 2018 Black Hat conference, IBM 

demonstrated DeepLocker, a proof-of-concept to demonstrate 

the integration of known malware and AI methods to create 

a sophisticated attack. DeepLocker evaded almost all security 

methods deployed today. To guard against such attacks, 

defenders must employ a combination of AI and continuous 

machine learning to extract features and patterns, improve 

decision making, and detect unknown threats. Natural language 

processing must be employed to help security analysts 

consolidate threat intelligence. Reasoning can be facilitated by 

highlighting evidence of breaches, assisting threat remediation 

planning, and helping to anticipate new threats. Automation 

must be employed to reduce the burden on human analysts, 

thereby decreasing reaction time.

Adversarial AI is used to evade detection by fooling models, 

poisoning training data, and stealing training data and 

trained models. Multiple examples demonstrate that only 

simple alterations may be needed for this, including one 

instance where placing a sticky note on a stop sign can make 

AI algorithms mistake it for a speed limit sign. Protecting 

AI services requires the integration of Data Security, Model 

Security, and Application Security. At the data level, it is 

critical to protect the integrity, provenance, and quality 

of the date. Model security is achieved by baking security 

and privacy guarantees into the entire process of model 

development and construction. Application security is 

accomplished by end-to-end management of AI applications, 

including operations modeling and application testing3. 

all risks and vulnerabilities within the system, manage the 

risks with appropriate mitigations, prevent migration of the 

vulnerabilities between layers and domains, and implement the 

appropriate security posture for the application. In doing this, 

the United States Armed Forces will be able to accelerate the 

adoption of advanced technology from the microelectronics 

industry and out-innovate its adversaries (Figure 4.2)2.
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Figure 4.2: Future Air Force battlespace2

(courtesy of Len Orlando, AFRL)

Future Air Force Battlespace
• Combination of Manned, Unmanned, and Autonomous platforms 

working cooperatively to achieve mission objectives
• Quick decision on-board processing necessary at the edge for optimal 

decision making
• High bandwidth data exchanges for cloud and remote processing
• Resilient systems capable of operating under duress in contested 

environments
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Embedded security

Interfacing with the analog world creates unique security 

challenges that requires creating embedded systems 

resistant to attack4. Medical devices, autonomous vehicles, 

and the Internet of Things depend crucially on embedded 

security. In fact, the serious security risk represented by 

analog electronics and sensors represent is often overlooked. 

With simple side-channel electromagnetic, acoustic, or 

optical attacks, sensors can be spoofed, and security 

systems overcome4.

Data from sensors are often trusted by the systems that 

depend upon them for operation, without the type of scrutiny 

given to digital data. Therefore, by manipulating the 

physical phenomena the sensor is designed to interpret, 

an adversary can cause an undesired course of action. For 

example, by altering the voltage interrogated by a thermal 

sensor, a system can be forced to interpret a temperature as 

being well below absolute zero4. The MEMS accelerometer on a 

smartphone can be tricked to measure steps by simply playing 

a YouTube video with embedded sounds that cannot be easily 

detected. Information can even be communicated using this 

method. Using a laser, commands can be injected into voice-

controlled systems from a distance, even through windows4.

When designing systems, it is critical to consider the 

physics of analog sensors in order to address security. 

Microprocessors should not blindly trust sensors and should 

include algorithms to determine the reasonableness of 

sensor data and detect sudden or unusual changes. Sensors 

and the systems they interface with should consider potential 

side-channel attacks and design both physical and software 

measures to mitigate these attacks. Additionally, there 

should be a focus on designing trustworthy systems and 

remembering physics when writing control systems, rather 

than focusing only on trustworthy components.

Cryptography in the quantum era 

While we are not certain when it will arrive, quantum 

computing represents a critical threat to public key 

cryptosystems and the information they protect, and the 

Cryptographic Technology Group at the National Institute 

for Standards and Technology (NIST) is responsible for 

developing quantum-resistant encryption standards5. The 

security of well-deployed public key cryptosystems is based 

on the hardness of factorization (e.g., RSA signature and RSA 

public key encryption) or upon discrete logarithm problem 

(e.g., Diffi  e-Hellman Key Agreement over fi nite fi elds and 

elliptic curves). Quantum computing changes what we 

believed about the hardness of discrete log and factorization 

problems, such as when they can be built to a size that can 

execute Shor’s algorithm. Both factorization and the discrete 

logarithm problem can be solved in polynomial time, thereby 

providing exponential speedup over classical factoring and 

discrete logarithm algorithms. Quantum computing can also 

impact the security of symmetric key-based cryptography 

algorithms by using Grover’s algorithm to search the 

Advanced Encryption System (AES) keys. However, the 

speedup using a quantum computer is quadratic, unlike the 

exponential speedup off ered by Shor, and can be mitigated 

by increasing the key size.

NIST is developing post-quantum cryptography standards 

for deployment in 2024. This process commenced in 2016 

with the development of post-quantum cryptography 

criteria and requirements and a call for proposals. The 

transition and migration to the new standards will not be 

trivial, so early preparation is essential. Plans must be made 

for algorithm changes for existing systems and for next-

generation hardware cryptographic libraries and accelerators 

(Figure 4.4). Firsthand experience through prototyping is 

important, as the new algorithms will clearly impact areas 
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Figure 4.3: The two duals in Cybersecurity and AI3 (courtesy of Josyula Rao, IBM)
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such as power consumption, computing resources, and 

implementation costs, among other impacts. The transition 

and migration will be a journey, but the result will be security 

protection in a post-quantum world5.

Quantum-safe solutions are currently being explored both in 

government and in the private sector. For example, Amazon 

is currently assessing the strategy for protecting the overall 

network architecture for cloud computing of its Amazon 

Web Service (AWS) against quantum attack6. AWS employs 

multiple protocols (TLS, SSH, IPSec, MACSec, and DWDM) to 

meet the various needs of the network, and all the protocols 

require end-to-end security. In addition, their customers have 

diff erent requirements for the length of time information 

must be protected. Information must be protected for as 

long as the information is sensitive. Some information has 

limited temporal value, e.g., temporary security credentials, 

while some must be protected for years, e.g., credit card 

information. Other information must be protected for 

decades, e.g., trade secrets and classifi ed information, and 

there is some that must be protected over a lifetime, e.g., 

personal information or DNA.

Protecting information on the cloud requires end-to-end 

protection, from customer to the cloud, and throughout the 

period the information has value6.

There is a range of opinions regarding the time of fi rst 

availability of a Shor-capable quantum computer, ranging from 

a decade to many decades. While there is a range of opinions, 

and because sensitive information can have value for a very 

long time, it is critical to prepare for a post-quantum future 

today. The protection schemes must assume that an adversary 

may collect and store encrypted information during transport 

for subsequent analysis—hence the urgency. AWS’s approach 

is to use a hybrid key exchange method that combines a 

classical and a post-quantum key to assure the security and 

confi dentiality is as strong as the combined key security.

AWS is an active participant in the NIST post-quantum 

standardization activity and works with other international 

standards bodies on hybrid key exchange standards. AWS 

has already deployed post-quantum cryptography 

for customer evaluation and to protect the AWS Key 

Management Service. This will provide an excellent 

experience base to support the standardization and rapid 

deployment of post-quantum cryptography6.
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Figure 4.4: Post-quantum cryptography (PQC)5 (courtesy of Lily Chen, NIST)
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4.3. Security and Safety of 
Autonomous Systems
Overview and needs

In the IoT era, a multitude of devices are connected to 

formulate end-to-end autonomous systems. A tremendous 

amount of information is generated on the edge using 

variety of sensors, which is passed through multiple stages of 

processing and interconnect to form end-to-end autonomous 

systems. The safety and security of these autonomous 

systems, therefore, is heavily dependent on how security 

is handled in various stages of the end-to-end systems. 

This section focuses on specifi c challenges currently faced 

and recommendations on addressing them for security of 

autonomous systems.

As devices permeate the physical world, trust in these 

devices becomes a matter of safety. Thus, security has 

never been more important. System safety and reliability 

need to consider malicious attacks, in addition to the 

traditional concerns of random failures and degradation of 

physical-world systems. Security of cyber-physical systems 

needs to consider how to continue to function or fail 

gracefully, even after attacks. Intelligent algorithms are 

needed that sift through contextual data to evaluate trust 

and do secure sensor fusion over time. Contextual data has 

tremendous variety and quantity. The systems of the future 

are actually systems of systems with limitless possibilities 

for communication and signaling. For instance, cars can 

communicate with each other and with roadside infrastructure. 

Finally, as with human processing, systems must be augmented 

with the intelligence to trust or not trust all they perceive.

Endpoint security in hyperconnected future

The ICT value chain ranges from the sensors generating 

information to diff erent processing nodes to users, and it 

involves a variety of devices and HW/SW platforms coming 

from multiple suppliers and stakeholders. The hyperconnected 

world is built on smart devices, systems, and systems of 

systems that are moving toward autonomous control using 

AI. This autonomous control necessitates trusted data, which 

involves identifying data source and integrity7.

Lack of adequate data security (data identity and data 

integrity) and the current security attack defense 

strategies based on known threats in cyber systems favor 

attackers, with cost of attack being low against the cost 

to defend the systems. Research needs to focus on building 

fundamental solutions to eliminate root causes and tip the 

balance in favor of defenders by lowering the cost to defend 

and raising the cost to attack (Figure 4.5)7.

Since security is directly impacted by the complexity of 

processing, enabling the safety and security of autonomous 

systems requires building HW-primitive secure functions at 

the device level and then addressing security hierarchically 

at each level of the value chain. Hardware Root of Trust (data 

identity and integrity) is required at each level of the value 

chain to ensure the system’s security, from data creation to 

processing at diff erent stages. The systems also need to be 

able to adopt the HW RoT to account for network failures or 

network upgrades. AI can play an important role in building 

secure and safe autonomous systems but will not address 

all security issues unless HW RoT is deployed throughout the 

connected systems (Figure 4.6)7.

Additional themes and considerations 

• Meeting the security needs of the U.S. Department of 

Defense (DoD) will require a partnership with industry, 

so the DoD can take advances of industry innovation. 

It also requires the government to operate at the speed 

of industry.

• The cost and complexity of implementing quantum-

resistant encryption is signifi cantly larger and more 

diffi  cult than past transitions. This is due to both the 

complexity of the quantum-resistant algorithms and the 

diversity of applications requiring protection.

• Protecting IoT devices is more than encrypting the digital 

channel. IoT systems must treat sensors as untrustworthy 

and should validate sensor data via the software stack and 

through the overall system design.

• AI and other applications that access large amounts of 

stored information may be negatively impacted by the 

overhead of quantum-resistant decryption. However, 

this may be off set by the positive impact of quantum 

computers on these applications.

• Protecting information systems requires attention at 

all levels of system hardware, from design through 

manufacturing and deployment. It is truly a system-

engineering problem.
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Figure 4.6: Security and safety framework for autonomous systems7 (courtesy of Doug Gardner, Analog Devices)

Figure 4.5: The current security attack defense strategies based on known threats in cyber systems favor attackers with cost of attack being 
low against the cost to defend the systems. Research needs to focus on building fundamental solutions to eliminate root causes and tip the 

balance in favor of defenders by lowering the cost to defend and raising the cost to attack7. (courtesy of Doug Gardner, Analog Devices)
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Security in autonomous vehicles

Autonomous vehicles are built using a large number of 

integrated sensors, thereby increasing their susceptibility to 

adversarial attacks (Figure 4.7). As an example, an attacker may 

fl ash high-speed-limit images around a corner and cause vehicle 

to lose control. There is a need to build security for each of the 

sensor systems that generate critical data, as well as building 

robust AI networks that together provide the autonomy of 

vehicle operation. The secure systems must be built at a more 

robust HW level with cryptographic solutions, as current 

public-key cryptography is seriously threatened by the huge 

processing power of quantum computing8.

The growing complexity of systems like automotive- and 

5G-IoT is more vulnerable to security threats, as increasing 

code size generally leads to higher security risk. A Hardware-

Intensive Virtualization Architecture (HIVA) approach was 

proposed based on decomposing applications to fi t into small 

VMs (Virtual Machines) secure execution environments9. 

Diff erent types of vulnerabilities, e.g., buff er/resource 

management, quantum cryptography, AI-enabled attack, etc., 

can be mapped against specifi c HW building blocks to tackle 

the individual vulnerabilities (Table 4.1). This process is just 

beginning, and solutions for many types of vulnerabilities still 

need to be picked up by research and development.

Smart grid security

The smart grid is essentially an evolution of the existing 

grid, using internet connectivity and consisting of embedded 

computing systems distributed over telemetry and remote 

control (SCADA) toward Industrial IoT (IIoT). While smart-

grid deployments benefi t from the fl exibility and cost of 

telecommunication and network-based devices, the autonomous 

systems using these smart grids are also susceptible to a 

widening collection of known and unknown cyberthreats10.

Addressing the security risks for smart grids requires a 

continuous analysis of threats and adaptation of system 

architecture via a full-stack “DevSecOps” posture (Figure 

4.8). Using Machine Learning, sustained telemetry, digital twins, 

and “Analysis by Synthesis” for devices, adaptation of compute 

architecture can mitigate new threats. By also including an 

evaluation of ROI for upgrades and synthesis, the system 

components can be upgraded accordingly10.
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Figure 4.7: The nervous system of the autonomous vehicle8 (courtesy of William White, Qualcomm)

Table 4.1: Vulnerabilities defended by hardware building blocks in HIVA9

Vulnerability Hardware Building Blocks

Buff er overfl ow Tagged memory

Resource management
MMU (Memory Management Unit)

MPU (Memory Protection Unit)

Post Quantum Cryptography Lattice engine and more

Information leakage to be explored

Permission to be explored

Code injection to be explored

Numeric error to be explored

Video/sensor data path to be explored

AI-enabled attacks to be explored

Digital M/S latch to be explored

110



Autonomous system security

There is a need to derive threat models of complex autonomous 

systems with various layers of control to obtain a security-aware 

autonomy architecture that will enable tradeoff s between 

security-related overhead and the overall quality of control in 

the presence of attacks. Machine learning (ML) networks have 

to model adversarial networks to evaluate diff erent threat 

scenarios. Stealthy attack scenarios for automotive systems, for 

instance, must employ adversarial learning approaches and HW-

SW co-design of cyber-physical security components11.

Key areas of focus and follow-on research

• Building end-to-end security for highly connected autonomous 

systems, HW RoT and security primitives, and trusted data

• Minimizing the security threats at the root, which requires 

building secure smaller (small code size) components and 

constructing complex systems from these secure components

• Lengthening system durability and security through 

careful dynamic assessment and adaptation against 

failures and threats

• Using AI and ML to fi nd appropriate solutions to detect, 

analyze and adopt security threats

• Finding alternatives to current cryptography techniques, 

which are under threat due to quantum computing and 

research is required to fi nd alternatives

Overview and needs

Complexity is the enemy of security, and today’s hardware 

platforms are highly complex due to the drivers of 

functionality, performance, and energy effi  ciency. Modern 

SoC designs incorporate an array of special-purpose 

accelerators and IP blocks (Figure 4.9). The security 

architecture of these systems is complex, as these are 

now tiny distributed systems where security models with 

diff erent trust assumptions for each component must be 

built. Further, these components are often sourced from 

third parties, implying the need for trust in the hardware 

supply chain. The pursuit of performance has also led to 

subtle issues in microarchitecture. For instance, many existing 

hardware platforms are vulnerable to side-channel attacks. 

Finally, for many IoT devices, primary design considerations 

are cost, time to market, energy effi  ciency, and consumer 

usability. Security is very low on the priority list (if it’s 

there at all), and available HW resources are severely 

constrained. Driven by these and other problems, the 

future requires fundamentally new hardware designs. 

4.4. Secure Hardware Design
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Figure 4.8: Integration of the DevSecOps engineering practice with Machine Learning and telemetry will allow for a joint 
and continuous optimization of the CPU architecture, including critical use-case analysis, metrics for evolving/simulated 

threat vectors, and cost of upgrade vs. liability of compromise.10 (courtesy of Stan McClellan, Texas State University)
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The hardware security topics include, among others, HW 

attacks from HW Trojans (used for Denial-of-Service attacks 

and information leakage), untrusted foundries, counterfeit 

ICs, physical attacks, side-channel attacks, fault injection 

(used for violation of Integrity and Confi dentiality), reverse 

engineering, and fake parts12. 

It should be emphasized that PCB supply chain has received 

little attention in HW security, all the while being easier 

to attack. SoCs are also becoming new attack points, as 

they are connected to the outside world through WiFi and 

other communication means. In designing secure SoCs, 

security rule checks can be recommended with the objective 

to provide automated security assessment and possible 

countermeasures of a given design for target vulnerabilities12. 

The entire lifecycle needs to be considered in the context 

of HW security: design, fabrication, assembly, distribution, 

lifetime, end of life/recycling. In an SoC lifecycle, the 

integration phase (going from RTL to layout) is a particularly 

critical step. Overall, three guidelines can be recommended: 

protect the IP, protect the assets, and protect the supply 

chain. For example, steps in protecting the supply chain 

should include IC authentication (using ECID, PUF chip ID), 

PCB authentication, subsystem authentication, and HW/FW 

self-authentication.

Secure computing

A critical question in the context of hardware security is 

how to trust “remote” computation.13 One approach would 

be to minimize the Trusted Computing Base (TCB). Multi-

tenancy requires architectural isolation of processes, which is 

fundamental to maintaining correctness and privacy. However, 

performance optimization at the microarchitectural level 

makes this a big challenge. Isolation breaks because of the 

shared microarchitectural state. Side-channel attacks exploit 

this, as was shown in famous Meltdown and Spectre cases. 

A stronger form of isolation can be achieved by using enclaves, 

as they strengthen the process abstraction. Processes guarantee 

only isolation of memory, whereas enclaves provide a stronger 

guarantee. In fact, no other program can infer anything private 

from the enclave program through its use of shared resources 

or shared microarchitectural state. Enclaves also decouple 

performance considerations from security. Finally, enclaves 

provide security guarantee under chosen threat models.

Three strategies for building enclaves can be suggested13: 

spatial isolation, temporal isolation, and cryptography. 

An important topic in secure computing is mitigation of 

microarchitectural vulnerabilities14. Currently, the HW/SW 

landscape is evolving towards heterogenous computing, 

where utilization is driving increased disaggregation and 

sharing of resources. In the cloud SW landscape, third 

parties are delivering programing to the cloud as VMs, 

applications, or even function levels. Cloud, on the other 

hand, supports Confi dential Computing via Trusted Execution 

Environments (TEEs), VMs, processes, or even functions. 

Cloud is also making many HW primitives SW controlled. 

With all these changes, diff erent attack surfaces emerge 

that HW must comprehend and defend. Figure 4.10 provides 

an evolutionary view of cache side-channel attacks and 

mitigations for them. Several relevant questions arise in this 

environment: How can a HW developer go about creating 

new features in microarchitecture? Would it create new 

vulnerabilities? How would the mitigation stand the test 

of time and defend against new attacks? These challenges 

apply not only to cache side-channel attacks, but also to 

all optimization problems across the platform. 
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Figure 4.9: SOC security is a challenge12 (courtesy of Mark Tehranipoor, University of Florida)
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Hardware for cryptography

All hardware, from cloud to edge to IoT, needs security and 

cryptography15. In the past, we assumed that security attacks 

take place on the channel between communicating parties. 

Protection was provided through strong mathematical 

algorithms and protocols. Therefore, the focus was on 

effi  cient implementations of the cryptographic algorithms, 

such as DES and 3DES. Currently, the attack models include 

the channel and the end points. Not only are strong 

algorithms and protocols needed, but so are the secure 

implementation of them. The present need is for effi  cient 

and side-channel/attack-resistant implementations15. 

Security and trust in the analog/mixed-signal/
RF domain 

Typical IC lifecycle involves numerous entities around the 

globe1. This distributed nature justifi ably raises security 

concerns, and because of it many threat models and 

solutions have been created. However, they are mostly in the 

digital domain. Given that analog components play a huge role 

in many systems, from sensing and measuring to interpreting, 

acting, and optimizing, their security should not be overlooked. 

Not only do analog security and trust lag behind their digital 

counterpart, a 2017 survey16 showed that analog eff orts 

were simply mirroring digital domain approaches, such as HW 

Trojans, reverse engineering, and counterfeiting. The picture is 

slowly changing though, as a 2019 follow-up survey17 showed 

emergence of analog-specifi c solutions to security challenges.

In the RF communication area, integrity and privacy are well-

studied through communication and information theory, 

and mature solutions exist (jamming, interference, covert 

channels, etc.). But physical-layer security is an area of 

opportunity for exploration and development1. 

Given that the world is analog, and security must be an 

end-to-end solution, the analog domain should not be the 

weakest link. However, the analog/RF IC security and trust 

topics have yet to receive the attention and support needed 

to take off . One of the key challenges is that analog/RF 

designs still have limited automation, which hampers 

security analysis and solutions, and formal methods are 

extremely challenging for analog domain1.

Key areas of focus and follow-on research

General

• Improved security of billions of very-low-cost and easy-to-

implement devices

• While the design of mission-critical systems carefully 

considers security and attempts to address it while 

absorbing necessary costs, many IoT devices are driven 

by cost and quick/easy consumer adoption. They do not 

have even the most rudimentary security defenses. 

• Hardware futureproofi ng

• Hardware is generally infl exible. Some systems built on 

a given HW may remain in the fi eld for over a decade. 

Security attacks, however, continue to evolve.
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Figure 4.10: An evolutionary view of cache side channels14 (courtesy of Carlos Rozas, Intel)
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• "Security maturity" signoff  of HW design before its tape out

• HW design has advanced to have systematic methods to 

evaluate it for manufacturability, reliability, testability, etc.

• Vulnerability of the NVM systems to hardware attacks

• Methods to prevent/mitigate IP piracy at foundries 

• Ways to synthesize RTL for guaranteed security against 

known attacks

Secure computing

• Building single-chip secure processors

• Open source, formally verifi ed TCB

• Secure against all practical SW attacks

• Secure against physical attacks of memory

• Enhanced physical security against invasive attacks

• Minimizing performance overhead

• Interplay of security, performance, usability, and 

complexity creates a very challenging problem.

Overview and needs

AI is now integral to many security systems, for instance, 

anomaly detection to identify attacks or feature analysis 

for contextual authentication. AI’s capabilities continue 

to increase, and applications for these trusted systems 

continue to grow. However, the trustworthiness of the AI 

for these systems is unclear. This is a problem not just for 

security systems but even for general systems with implicit 

trust assumptions, for instance, visual object detection in 

autonomous vehicles. Researchers have shown that small 

perturbations to an image can sway neural networks models 

into the wrong decision. A well-placed small sticker on a stop 

sign can make a model classify it as a Speed Limit 45 sign. Other 

applications of deep learning systems have similar trust issues: 

the output of speech recognition might be manipulated with 

imperceptible audio changes, or malware might go undetected 

with small changes to the binary. Why deep learning models 

are so brittle is unclear as deep neural networks are 

famously inscrutable. A related problem is algorithm bias 

and fairness. Approaches are needed to make deep learning 

systems more trusted, transparent, and fair. 

Adversarial machine learning 

Adversarial machine learning is in its early days18. Similar 

to the early days of crypto, defenses against attacks are 

proposed and then quickly broken.

4.5. AI Security and Privacy
As illustrated in Figure 4.11, all steps of the machine-learning 

pipeline can be attacked. During the training phase, the 

attacker can augment or replace some small fraction of the 

training set. The goal of the attacker is to maximize the error 

of the resulting model (untargeted) or cause misclassifi cation 

of a specifi c sample (targeted). The challenge problems for 

training-set poisoning include addressing targeted attacks and 

assessing if system-level considerations or hardware can help.

During the test output phase, model theft uses queries to 

steal the machine-learning model. For example, an attacker 

may want to replicate a cloud service that provides a 

classifi cation service. Challenge problems related to model 

• Developing threat models

• What actual threats need to be mitigated? How eff ective 

are they in practical scenarios?

• Documenting HW/SW ‘contract’ for microarchitectural 

properties around security

• How can SW reason and express the security property 

it desires?

• How can HW innovate on microarchitectural design to 

improve performance and power?

Hardware for Cryptography

• Crypto-diversity, lightweight crypto with side-channel 

security, and low-latency crypto

• More than Moore: Post-quantum computing cryptos, 

including secure implementation as through masking

• Hardware-entangled crypto, which has minimum Root of 

Trust through PUF (Physically Unclonable Function) and 

TRNG (True Random Number Generator)

• Homomorphic encryption
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Figure 4.11: Attacks on the machine-learning 
pipeline18 (courtesy of Somesh Jha, UW-Madison)
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theft include fi nding robust defenses and investigating 

trusted hardware or new economic models.

During the test input phase, adversarial examples are the most 

studied attack on machine learning. Adversarial examples are 

perturbations created by attackers to cause misclassifi cation. 

Robust defenses have proved elusive. These attacks are usually 

white box in the sense that the models are known to the 

attacker. Attacks can also be black box, for example when the 

attacker replicates the model and does a white-box attack on 

the replicated model. It turns out that adversarial examples 

transfer well, so that adversarial examples on the replica will 

likely be adversarial examples for the original. Challenge 

problems in adversarial examples include determining if 

adversarial training can be accelerated and understanding 

adversarial models and what makes them robust.

Deepfakes are not part of the machine-learning pipeline 

but this is a related important problem with deep societal 

implications. The essential technical problem is to determine 

if content is produced by a generative model, as opposed to 

being natural. This is a diffi  cult problem, a sort of Turing test.

Note that the problems facing security in machine learning 

are not necessarily new, and we should take lessons from past 

work that may apply, including:

• Training-set poisoning is similar to what is done in robust 

statistics.

• Model theft is similar to what is done in active learning.

• Adversarial examples are similar to what is done in robust 

optimization.

Secure computation for AI 

We are now seeing more entities interested in or concerned 

about sharing personal and proprietary data. The entities 

here can be roughly described as institutions, customers, 

and regulators. Institutions are looking at new services that 

require collaboration on shared data. Customers are gaining 

understanding of the value and risks of sharing their data. 

Regulators understand the excitement around sharing data, 

but also are concerned about potential abuse19.

Encryption methods are one of the main technologies that 

enable data sharing and yet maintain privacy. In the usual 

model of inference, a user submits data to a cloud service 

provider that uses a machine-learning model to provide an 

inference based on the user’s data. Homomorphic encryption 

is one way for a user to avoid submitting sensitive data. The 

user submits homomorphically encrypted data, and the model 

is evaluated over the encrypted data. The encrypted result 

is returned to the user, who can then decrypt the result. 

Currently, open-source tools are available that allow anyone 

to integrate homomorphic encryption into ML applications20.

Figure 4.12 outlines how encryption scope is gradually 

shifting in two phases toward (a) stronger encryption 

techniques and (b) techniques to compute on encrypted data. 

The fi rst phase includes the shift from pre-quantum to post-

quantum cryptography. The second phase includes the shift 

from cryptographic methods to protect the confi dentiality 

of data in transit and at rest to cryptographic methods to 

protect the confi dentiality of data in use with the ability to 

compute on encrypted data.
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Figure 4.12: Trends in applied cryptography19 (courtesy of Rosario Cammarota / Intel)
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The methods of the second phase bring a paradigm shift in 

both cryptography and computing. In traditional cryptography, 

cryptographic techniques are decoupled from the applications. 

In contrast, to protect data in use, computing must meet 

cryptography, and the corresponding cryptographic methods 

become entangled with the applications.

Examples of the techniques in the second phase are 

homomorphic encryption and secure multi-party 

computation. These changes bring new fundamental 

data types, additional challenges with data movement, 

and an increase in the complexity of the cryptographic 

algorithms. Current implementations of these schemes in 

software are still impractical in storage, communication, 

and computational overhead, despite progress in making 

this software more effi  cient. In addition to the overheads, 

applications need to be rewritten to instruct existing 

hardware to process encrypted data. 

In spite of these challenges, the benefi ts of introducing these 

cryptographic methods to data privacy and economic growth 

would be unparalleled. Hence, there is a clear need for new 

hardware for cryptography to compute on encrypted data. 

Besides technologies, standardization and educational paths 

are required.

Secure collaboration for AI

Many organizations need to learn from cross-organizational 

data but cannot share their data. For example, banks would 

like to share data for anti-money laundering. Open-source 

platforms are currently being developed to enable secure 

collaboration21. One example is MC2, as illustrated in Figure 

4.13. Two approaches used in these platforms are secure, 

multi-party computation and hardware enclaves. There is an 

inherent tradeoff  between these approaches: multi-party 

computation is slow and expensive, while hardware enclaves 

require trusted hardware (with trust assumptions) and setup. 

Diff erential privacy, in addition to cryptography and hardware 

enclaves, provides yet another complementary approach.

While the traditional approach is to have diff erent research 

thrusts of the algorithm and the hardware, with security and 

privacy coming later, an important task is co-optimization 

of algorithms, hardware, and security22. Federated learning 

involves training a machine-learning algorithm on multiple 

local datasets contained in local nodes. This is done 

without exchanging data but, instead, by exchanging model 

parameters, as with neural network weights. One solution 

to the problem of machine learning on encrypted data is 

optimization of deep-learning computations represented as 

Boolean circuits. But this approach has been only partially 

successful so far. Hybrid and co-optimization of the design 

appears to be a more promising approach22. To fully address 

federated learning, co-optimization of the algorithm, 

protocol, software, and hardware is needed. We also need 

end-to-end automated solutions to remove non-recurring 

engineering costs.

Key areas of focus and follow-on research

• Building defenses for all parts of the machine-learning 

pipeline (e.g., model-stealing, training-set poisoning, and 

adversarial), as they can all be attacked 

• Solving deepfakes, an important unsolved problem with 

deep societal implications

• Merging of cryptography and artifi cial intelligence critical 

for user privacy

• Algorithms such as Fully Homomorphic Encryption 

require advances in hardware, storage, and 

communication to be fully practical.

• Learning from cross-organizational data that cannot be shared

• Algorithms and co-optimization are needed across the 

hardware, software, and network.

TrendChallengeGrand Challenge Promising Technology

Figure 4.13: Projects in MC221 (courtesy of Raluca Ada Popa/UC Berkeley)

116



Overview and needs

The proliferation of hyper-connectivity, the continuation 

of Moore’s Law, and the implications of system-of-systems 

has created unprecedented solution complexity—spanning 

from the cloud to system-on-chip designs—that impact 

our ability to assess and attest to system-level security. 

The challenge of understanding and ensuring system-level 

security creates an unprecedented level of complexity, 

especially given the integrated nature of such designs and 

their dependence on hardware, software, design fl ows, 

and lifecycle considerations. Here, system-level security 

challenges are explored, along with proposed solutions and 

recommendations.

In the last decade, the cloud has become the standard for 

outsourcing computation and storage, while maintaining 

control. We are still grappling with security challenges 

arising from the cloud (multi-tenancy, provider assurance, 

and privacy), while cloud off erings continue to increase 

in complexity. Cloud off erings include trusted execution 

environments and specialized, shared hardware and software. 

At the same time, interest in edge computing is growing, 

as cloud lacks the performance and privacy guarantees of 

nearby compute infrastructure. The heterogeneous nature 

of the edge implies that trust in edge service providers is a 

major challenge. Similarly, the security of IoT devices has been 

a plaguing challenge for years. Developing security must be 

made easier for small, often low-cost devices. Even if care is 

taken in the security design, diffi  culties arise from resource 

constraints or extreme environments, such as medical implants. 

4.6. System-level Security

Finally, systems have become more complicated at every level. 

Modern system-on-chip designs incorporate an array of special-

purpose accelerators and IP blocks, which are basically tiny 

distributed systems where distributed security models must be 

built with diff erent trust assumptions for each component.

Securing platform integrity and trust with 
hardware security

There are many hardware security challenges today, such as 

counterfeiting, malicious insertions in microelectronics, 

backdoors, side-channel attacks, extraction and bypass 

of roots of trust, and supply-chain assurance challenges23. 

Considerable security risks are associated with the involvement 

of third parties, so it’s vital to develop risk-mitigation 

strategies as the use of third-party IP, software, and solutions 

continues to grow with system complexity.

The mitigation strategies include early-stage analysis, industry-

driven research and standards, and emerging technologies. 

Special attention must be given to overall system integrity with 

supply chain, as well as security design. The implications for 

system security in the emerging era of heterogeneity must be 

addressed. For example, the PNNL’s Data Model Convergence 

(DMC) initiative explores purpose-built architectures for 

both data analysis and scientifi c simulation and has a long 

background in applying mathematics, program analysis, and 

machine-learning techniques to problems of national security 

(Figure 4.15)24. The complexities of converged workloads 

in high-performance computing involving modeling and 

simulation, ML/AI, and graph analytics call for more robust 

and scalable heterogeneous program 

analysis techniques to properly evaluate 

software and system-level security. 

Correctness and attestation of the 

system must be proven, as we move 

from unit to component to system, 

and fi nally to system of systems. 

The current challenges can be 

characterized as the “blurring of lines” 

on programming language, compiler 

infrastructure, and architecture. More 

research is needed to understand how 

to leverage system heterogeneity to 

prove a solid foundation for system-

level security.
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Figure 4.14: Third-party security risks23 (courtesy of Yousef Iskander / Microsoft)
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those associated with multi-tenant FPGAs, i.e., where the 

optimization of compute resources has driven the use of 

FPGAs by multiple users at the same time26. 

Possible types of the cloud FPGA attacks include on-chip 

voltage sensors to extract encryption key, temperature 

residue attacks, on-chip voltage supply attacks, and crosstalk-

based attacks (information extraction from adjacent wires). 

Remediation approaches to address them include a regular 

rectangular grid of voltage sensors, bitstream and netlist 

scanners, power throttling, and others. 

Overall, the system security vulnerability increases together 

with the compute performance as shown in Figure 4.16. This 

fi gure also shows an alarming trend that, in recent years, 

the growth rate of the security vulnerabilities has become 

greater than the performance27. The “patch and pray” 

model, commonly used today, is unsustainable given the 

growing landscape and complexity of system-level security. 

One of the approaches to identifying and mitigating entire 

classes of vulnerabilities through hardware architectures 

is the ongoing DARPA System Security through Integrated 

Hardware and Firmware (SSITH) program27.

Key areas of focus and follow-on research

Addressing system-level security brings an even greater 

challenge to the semiconductor industry, as all levels of 

system hardware and all lifecycle stages (from sourcing 

and design to manufacturing and deployment) need to be 

considered. Protecting both the infrastructure/enterprise 

and the data in today’s complex edge-to-cloud environment 

will require research in a number of key focus areas:

• The contribution (and timing) of technologies, such as 

homomorphic encryption and blockchain to address system 

level security challenges

• Innovative techniques to leverage system heterogeneity to 

improve system-level security

• Progression of tools and methodologies to provide system-

level attestation and trust

• Specifi c challenges in securing IoT devices

• Implementing a systematic approach to update devices 

amid an ever-changing threat landscape

• Innovative methods and technologies specifi c to IoT/

constrained device protection that go beyond digital 

data encryption to validate sensor data via the software 

stack and through the overall system design

• The compatibility and relevance of academic research with 

industry focus

Confi dential computing 

Confi dential computing is an important area of exploration, 

and various technology solutions need to be tested for 

delivery of secure computing environments25. Current 

megatrends that are driving the importance of confi dential 

computing include the proliferation of cloud computing, 

the growth of AI and analytics, and the emergence of the 

network and edge. Cryptography is an essential component 

in providing security for data at rest and data in motion, 

and homomorphic encryption is being discussed for data in 

use. How can data be protected when it is actively in use in 

computing environments that are not in our direct control? 

Trusted Execution Environments (TEEs) based on separation 

(i.e., physical, temporal, logical, cryptographic), is a promising 

pathway to confi dential computing, which requires signifi cant 

new research eff orts25.

The future of secure systems

There are new security challenges associated with 

emerging computing technologies. For example, FPGAs 

have been growing in use for cloud computing. This calls 

for better understanding of their vulnerabilities, especially 
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Figure 4.15: Data Model Convergence (DMC) approach24 
(courtesy of Mark Raugas / PNNL)
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4.7. Summary —New Trajectories for Hardware-enabled 
ICT Security
The pace at which today’s systems are increasing in 

intelligence and ubiquity is astounding. At the same time, 

the increased scale and complexity of these systems have 

forced hardware specialization and optimization to address 

performance challenges. All these advances in capability 

must go hand in hand with advances in security and privacy. 

Examples include securing weaknesses in the machine-

learning or conventional cryptography, protecting privacy of 

personal data, and addressing vulnerabilities in the supply 

chain or hardware.

Security Grand Goal: Develop security and privacy 

advances that keep pace with technology, new threats, 

and new use cases. Examples include trustworthy and 

safe autonomous and intelligent systems, secure future 

hardware platforms, and emerging post-quantum and 

distributed cryptographic algorithms.  

Research recommendations summary

Security and safety of autonomous systems

• Building end-to-end security for highly connected 

autonomous systems, HW RoT and security primitives, and 

trusted data 

• Minimizing security threats at the root by building secure 

smaller (small code size) components and constructing 

complex systems from these secure components

• Dynamic assessment and adaptation against failures and 

threats for longer durability and ongoing security of these 

systems 

• Desired level of security in a system is highly dependent on 

the expected lifetime of a system. 

• Using AI and ML to fi nd appropriate solutions to detect, 

analyze, and adopt security threats

• Finding alternatives to current cryptography techniques 

that are under threat due to quantum computing

TrendChallengeGrand Challenge Promising Technology

Figure 4.16: Performance and security trends27 (Courtesy of Keith Rebello / DARPA)
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Secure hardware design 

• Improved security of billions of very-low-cost and easy-to-

implement devices

• While the design of mission-critical systems carefully 

considers security and attempts to address it while 

absorbing necessary costs, many IoT devices are driven 

by cost and quick/easy consumer adoption. They do not 

have even the most rudimentary security defenses. 

• Hardware futureproofi ng

• Hardware is generally infl exible. Some systems built on 

a given HW may remain in the fi eld for over a decade. 

Security attacks, however, continue to evolve. 

• "Security maturity" signoff  of HW design before its tape out

• HW design has advanced to have systematic methods to 

evaluate it for manufacturability, reliability, testability, etc.

• Vulnerability of the NVM systems to hardware attacks

• Methods to prevent/mitigate IP piracy at foundries 

• Ways to synthesize RTL for guaranteed security against 

known attacks

Secure computing

• Building single-chip secure processors

• Open source, formally verifi ed TCB

• Secure against all practical SW attacks

• Secure against physical attacks of memory

• Enhanced physical security against invasive attacks

• Minimizing performance overhead

• Interplay of security, performance, usability, and 

complexity creates a very challenging problem.

• Developing threat models 

• What actual threats need to be mitigated? How 

eff ective are they in practical scenarios?

• Documenting HW/SW ‘contract’ for microarchitectural 

properties around security

• How can SW reason and express the security property it 

desires?

• How can HW innovate on microarchitectural design to 

improve performance and power?

Hardware for cryptography

• Crypto-diversity, lightweight crypto with side-channel 

security, low-latency crypto

• More than Moore: Post-quantum computing cryptos, 

including secure implementation as through masking

• Hardware-entangled crypto, which has minimum Root of 

Trust through PUF (Physically Unclonable Function), and 

TRNG (True Random Number Generator)

• Homomorphic encryption

AI security and privacy research

• Building defenses for all parts of the machine-learning 

pipeline (e.g., model-stealing, training-set poisoning, and 

adversarial), as they can all be attacked 

• Solving deepfakes, an important unsolved problem with 

deep societal implications

• Merging of cryptography and artifi cial intelligence critical 

for user privacy

• Algorithms such as Fully Homomorphic Encryption require 

advances in hardware, storage, and communication to be 

fully practical.

• Learning from cross-organizational data that cannot be shared

• Algorithms and co-optimization are needed across the 

hardware, software, and network.

System-level security

• The contribution (and timing) of technologies, such as 

homomorphic encryption and blockchain to address 

system-level security challenges

• Innovative techniques to leverage system heterogeneity to 

improve system-level security

• Progression of tools and methodologies to provide system-

level attestation and trust

• Specifi c challenges in securing IoT devices

• Implementing a systematic approach to update devices 

amid an ever-changing threat landscape

• Innovative methods and technologies specifi c to IoT/

constrained device protection that go beyond digital 

data encryption to validate sensor data via the software 

stack and through the overall system design

• The compatibility and relevance of academic research with 

industry focus
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New Compute Trajectories for 
Energy-Effi  cient Computing

Chapter 5

Seismic shift #5
Ever-rising energy demands for computing versus 

global energy production are creating new risk, but 

new computing paradigms off er opportunities with 

dramatically improved energy effi  ciency.

Rapid advances in computing have provided increased 

performance and enhanced features in each new generation 

of products in nearly every market segment, whether it 

be servers, PCs, communications, mobile, automotive, 

entertainment, among others. These advances have been 

enabled with decades of R&D investments by both the private 

sector and the government, yielding exponential growth 

in compute speed, energy effi  ciency, circuit density, and 

cost-eff ective production capability. Sustained innovation 

5.1. Executive Summary

in software and algorithms, systems architecture, circuits, 

devices, and semiconductor process technologies have 

been foundational to that growth pace. Although this 

trend has persisted for decades by successfully overcoming 

many technological challenges, it is now recognized that 

conventional computing is approaching fundamental limits 

in energy effi  ciency and, therefore, presents challenges 

that are much harder to surmount. Consequently, disruptive 

innovations in information representation, information 

processing, communication, and information storage are all 

pressing and critical to sustainable economic growth and 

United States technological leadership.

The number of information bits being processed and the 

number of computations per year continues to increase 

unabated, and it is projected that in 2050 we will be dealing 

with 1042–1046 bits (see Appendix). As shown in Figure 

5.1a, the total energy consumption by general-purpose 

computing continues to grow exponentially and is doubling 
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approximately every three years, 

while the world’s energy production is 

growing only linearly, by approximately 

2% a year. The rising global compute 

energy is driven by ever-growing 

demands for computation (Figure 5.1b), 

and this is in spite of the fact that the 

chip-level energy per one-bit transition 

in compute processor units (e.g. CPU, 

GPU, FPGA) has been decreasing over 

the last 40 years (as manifested by 

Moore’s law), and is ~10 attojoules or 

10-17 J in current processors. However, 

the demand for computation growth 

is outpacing the progress realized 

by Moore’s law. In addition, Moore’s 

law is currently slowing down as device 

scaling is approaching fundamental 

physical limits. If the exponential 

growth in compute energy is left 

unchecked, market dynamics will limit 

the growth of the computational 

capacity, which would cause a fl attening 

of the energy curve (the “market-

dynamics-limited” scenario in Figure 

5.1a). Thus, a radical improvement 

in energy effi  ciency of computing is 

required to avoid the limiting scenario.

The underlying technical challenge 

is bit-utilization effi  ciency in 

computation, i.e., the number of single 

bit transitions needed to implement 

a compute instruction. The current 

CPU compute trajectory is described 

by a power formula (shown as inset 

in Figure 5.2) with an exponent p~ ⅔. 

The theoretical basis for the observed 

trajectory and for the value of the 

exponent is not clearly understood, so 

the theoretical basis for computation 

needs further research. As an 

observation, if it is possible to increase 

the exponent in the formula by only 

~30%, the compute effi  ciency, and 

thus energy consumption, would 

have a 1,000,000x improvement. This 

is illustrated as “new trajectories” in 

Figure 5.2.
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Figure 5.1a: Total energy of computing (see Appendix for details): The solid green 
line indicates continuing the current computing trajectory while improving the 

device energy performance. The dashed green line indicates a “market-dynamics-
limited” scenario, stopping further increase in the world’s computing capacity and 

resulting in a fl attening of the energy curve. The blue box indicates a scenario 
where a radically new computing trajectory is discovered. The Decadal Plan model 

(green line) is compared to independent data by diff erent groups (circled dots).

Figure 5.1b: World’s technological installed capacity to compute information, in ZIPS, 
for 2010-2050. The solid green line indicates the current trend (see Appendix). The 
dashed green line indicates a “market-dynamics-limited” scenario, stopping further 

increase in the world’s computing capacity due to limited energy envelope. The blue 
box indicates a scenario where a radically new computing trajectory is discovered. 
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Call for action

Revolutionary changes to computing will be required soon. 

Computational loads continue to grow exponentially, 

as evidenced by the growth in artifi cial intelligence (AI) 

applications and training demands. New approaches to 

computing, such as in-memory compute, special purpose 

compute engines, diff erent AI platforms, brain inspired/

neuromorphic computation, quantum computing, or other 

solutions, will be necessary and will need to be combined in a 

heterogeneous manner. The scope of potential heterogeneous 

computing architectures is described in a recent National 

Science and Technology Council (NSTC) report on the Future 

of Computing1. This research will require a cross-disciplinary, 

cross-functional approach to realize commercially viable 

and manufacturable solutions with multi-decade longevity 

to replace the mainstream digital approach. This document 

is intended to stimulate multilateral collaborative research 

“from materials to architecture and algorithms” to establish 

revolutionary paradigms that support future energy-effi  cient 

computing for the vast range of future data types, workloads, 

and applications. For additional background, see the DOE 

Offi  ce of Science, Basic Research Needs for Microelectronics 

workshop report2.

The Computing Grand Goal is to discover computing 

paradigms/architectures with a radically new computing 

trajectory, demonstrating >1,000,000x improvement 

in energy effi  ciency. Changing the trajectory not only 

provides immediate improvements but also provides many 

decades of growth potential (as shown in Figure 5.1). This 

would be much more cost-eff ective than attempting to 

dramatically increase the world’s energy supply. 

i The Decadal Plan Executive Committee off ered recommendations on allocation of the additional $3.4B investment among the fi ve seismic shifts identifi ed in 
the Decadal Plan. The basis of allocation is the market-share trend and our analysis of the R&D requirements for diff erent semiconductor and ICT technologies.

This chapter addresses fundamental ICT capabilities and 

limits, and it describes outcomes from our open forum 

for brainstorming new computing applications and their 

corresponding implications for the semiconductor industry. 

Furthermore, emerging architectures were discussed 

in the context of the application space they enable and 

the corresponding trend lines in energy, storage, or 

communication that they can dramatically alter.

Invest $750M annually throughout this decade to 

alter the compute trajectory. Selected priority 

research themes are outlined below.i
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Figure 5.2: The current CPU compute trajectory is described by a power formula (shown as inset) with an exponent bounded by p~ ⅔. 
The theoretical basis for the observed trajectory and for the value of the exponent is not clearly understood, so the theoretical basis 
for computation needs further research. As an observation, if it is possible to increase the exponent in the formula by only ~30%, the 

compute effi  ciency, and thus energy consumption, would have a 1,000,000x improvement. This is illustrated as “new trajectories”.
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5.2. Energy-Effi  cient Computing: Fundamentals, Challenges, 
and Application Drivers 
Overview and needs

ICT systems support daily social life, scientifi c discoveries, 

advances in healthcare, engineering innovations, and 

economic activities. ICT has and will continue to contribute 

greatly to the global economy. Applications are only limited 

by the computational power that can be delivered by today’s 

technology. While we may not be able to predict how ICT 

will evolve, we know that market dynamics and energy 

constraints will require a shift to a new compute trajectory 

enabled by the research and development strategies that are 

the goal of this SRC Decadal Plan.

These strategies are informed and shaped by an 

understanding of fundamental limits in energy, storage, 

and communication based on trends from widely exploited 

general-purpose computing platforms, such as CPUs, 

GPUs, FPGAs, etc. Emerging nonconventional computing 

architectures will also need to be evaluated against 

established trends to identify their potential impact.

Zettascale computing (1021 FLOP/s) may be the fi rst 

milestone that we are not able to reach in a reasonable 

and predictable timeframe with existing technologies, as 

compared to prior mega-, giga-, tera-, peta-, and exa-scale 

milestones11. Thus, attempting to build a general-purpose 

zettascale computing system by 2030 to adeptly address the 

needs of a broad collection of the world’s most challenging 

problems is not currently possible. One example of the 

future computational challenges is the accurate simulation 

of the X-51A recoverable hypersonic vehicle over a one-hour 

fl ight path (Figure 5.3). This challenge could generate as 

much as an exabyte of data and requires tightly integrated 

artifi cial intelligence, data analytics, and high-end physics 

capabilities due to the complex aerodynamic structure, 

challenging subsonic, supersonic, and hypersonic combustion 

eff ects (from rest to full speed), and extreme material 

property variations attributable to non-linear heat injection 

throughout the fl ight path.
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Figure 5.3: Artist rendering of the X-51A recoverable hypersonic 
vehicle with a companion computational fl uid dynamics simulation 

(by Michael C. Adler and Datta V. Gaitonde from The Ohio State 
University, using DoD HPCMP resources)12

Figure 5.4: Dimensions of high-end systems performance11 (courtesy of Roy Campbell, DoD and James Ang, PNNL)
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As shown in Figure 5.4, some dimensions of high-end 

systems performance noticeably lag behind the needs, 

in particular interconnect and I/O bandwidth, as well as 

memory capacity. In addition, while we have greatly benefi ted 

from shrinking the feature size of CMOS transistors (a 

dominant driver for growth in the FLOP/s axis), we anticipate 

exhausting this trend in less than 10 years, as smaller CMOS 

feature sizes approach the fundamental physics limits 

of scaling/shrinking devices. We will, therefore, be forced 

to consider concepts other than CMOS shrinking (e.g., 3D 

stacking) to realize sustainable technological improvements. 

These concepts, however, will only provide temporary relief. As 

the size and complexity of our problems increase, we will not 

only have to reconsider our use of broadly applicable systems 

but will also have to consider alternatives to general-purpose 

von Neumann processors at the core of these systems. 

By 2030, we anticipate an era of specialized computing 

(perhaps one system type per problem class), systems with 

reconfi gurable, heterogeneous computing processors, or 

processors that employ datafl ow constructs in lieu of historical 

control-fl ow methods. Many of these advanced architecture 

concepts represent a substantial departure from today’s 

high-end computers, and thus will be developed through an 

application-driven hardware/software co-design approach. 

The commercial world embraced data-centric computing to 

develop and apply a broad range of machine-learning and 

deep-learning methods to detect, recognize, classify, and 

train on large data sets collected from IoT devices, including 

sensors, smart-home devices, cameras, etc. This shift toward 

data-centric needs rather than compute-centric needs is also 

recognized by the DOE scientifi c research community for 

both computational and experimental data sources. 

What will computers look like beyond Moore’s Law? 

This is still an open question13 that has many facets. The 

theoretical basis for computing performance is less 

solid than the theoretical basis for information storage 

and communication, like the Shannon limit and others. 

New metrics for measuring performance are needed that 

would account for widespread use and the fundamental 

limits of accelerators13. On the elemental level, new device 

structures and aggressive introduction of new materials for 

the development of chips beyond silicon can be expected14. 

Improvements in hardware alone will not be enough to 

handle future needs. Sustained innovation in software and 

algorithms is one of the critical future targets15. The DOE 

Advanced Scientifi c Computing Research (ASCR) program 

hosted a scientifi c-community workshop on Productive 

Computational Science in the Era of Extreme Heterogeneity 

that defi nes basic computer-science research needs and 

opportunities to develop operating systems, runtime 

systems, programming environments, and tools to support 

heterogeneous computing16. 

5.3. Impact of Emerging 
Device Technologies 
Overview and needs

Radically new solutions are needed for future ICT, with major 

innovations in devices, circuits, and architectures. Circuits could 

be digital, analog, or hybrid. New device physics needs to be 

explored that includes spintronics, nanophotonics, nanoionics, 

superconductivity, and other phenomena for emerging computing 

technologies. Also, a new conceptual abstraction is needed 

for emerging information representations and associated 

novel processor architectures. Possible alternate computing 

models include, for example, high-dimensional computing, 

analog “approximate computing,” and others. A juxtaposition or 

hybridization of computing models may drive the development 

of neuromorphic or brain-like architectures, which could be 

a signifi cant component of future compute systems. New 

architectural research congruent with novel semiconductor 

technology research will be increasingly important to achieve 

platform-capable, self-consistent, and optimal system 

solutions having enhanced performance and energy-effi  ciency 

with minimum added complexity. For example, the role of 

future transistors, interconnects, and memories is critical for 

emerging architectures. However, in addition to assessing the 

potential benefi ts of those emerging technology concepts 

on conventional architectures, we also need to look at the 

reverse: new architectures driving semiconductor technology 

requirements, e.g., extending the operating space not otherwise 

attainable under conventional architectures through error-

resilient computing architectures. We must discover how new 

architectures can take full advantage of emerging technology 

components or interconnect fabrics to create disruptive, 

platform-capable solutions that might permeate multiple 

application segments with no or minimal added complexity.

Shannon models of computing

As traditional deterministic solutions to computing are 

reaching their limits, new nondeterministic, “accurate-

enough” methods are being considered to build systems that 

can cope with and/or exploit inherent variability or device 

stochastic characteristics for performance-power-area 

benefi ts17. Nanoscale logic circuit fabrics can be treated 

as noisy communication channels on which inference type 

machines are built (statistical information processing), so that 

information is processed reliably (Figure 5.5). 
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The Shannon-inspired probabilistic 

computational models may enable not 

only increased levels of network reliability 

despite poor logic gate-level reliability, 

but might also off er opportunities for 

the design of energy-effi  cient computing 

architectures employing system-level 

considerations17,18. This approach would 

be similar to the design of communication 

links, which considers an overall 

minimization of bit-errors by employing 

error control coding and channel 

estimation. Just as these links are able 

to operate at their fundamental limits on 

channel capacity, the Shannon model of 

computing might enable the design of 

computing systems that operate at their 

fundamental limits on energy effi  ciency.

A Shannon-based computing model 

(Figure 5.5) comprises the use 

information-based metrics, plus the 

design of low Signal-to-Noise Ratio 

(SNR) circuit fabrics (such as in-memory 

architectures, spintronic logic, voltage 

overscaled circuits) and development 

of Statistical Error-Compensation (SEC) 

techniques (such as Algorithmic Noise 

Tolerance, Stochastic sensor NOC, 

Soft NMR, Likelihood processing)18. 

This model strives to shape the error 

statistics of nanoscale devices seen 

at the system level via circuit, logic, 

and architectural methods in order 

to realize error compensation with 

minimal overhead. This can be applied, 

for example, to spintronics-based logic 

to enhance energy effi  ciency17. One 

envisions an integrated approach that 

combines traditional and Shannon-

based computing with emerging 

devices in order to design computing 

systems of the future that operate 

at the limits of energy effi  ciency and 

reliability (Figure 5.6).
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Figure 5.5: Shannon-inspired model of computing17 (courtesy of Naresh Shanbhag, University of Illinois at Urbana-Champaign)

Figure 5.6: An integrated approach for reducing energy and device error rate 
and increasing architectural complexity, employing both Shannon-inspired and 

traditional computing models17 (courtesy of Naresh Shanbhag, University of 
Illinois at Urbana-Champaign, S. Manipatruni, D. Nikonov and I. Young, Intel).
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High-dimensional computing

Information representation by high-dimensional (HD) vectors 

having identical and independently distributed random 

components has been shown to be inherently one-shot, 

continuous learning, and capable of high-level reasoning 

with unsurpassed representation error tolerance. High-

dimensional vector spaces enable the memory-effi  cient 

representation of very large numbers of distinct or similar 

objects or sets of them. The associated computing engine 

relies essentially on an associative memory and an arithmetic 

unit supporting three component-wise arithmetic operations, 

which are intrinsically parallel and local, thus suitable for 

tightly integrated logic and memory. The fundamental error 

tolerance of HD computing, inherent parallelism and locality, 

and one-pass/continuous learning capabilities may also allow 

for simultaneous breakthroughs in energy effi  ciency.

Selected examples of emerging devices

Photonics presents signifi cant opportunities to address 

bandwidth bottlenecks in data movement for high-

performance computing systems. Novel high-speed, low-

power transceivers, light sources, waveguides/modulators, 

and photodetectors represent some of the essential building 

blocks for integrated photonics—a fi eld where sustainable 

dimensional scalability remains a key challenge. Beyond 

photonics as a potential interconnect fabric, photonic 

devices have also been shown to enable certain classes of 

mathematical operations like matrix vector multiplication as 

illustrated in Figure 5.7. Overall system density and energy 

effi  ciency represent a key research challenge to overcome, 

compared, for example, with alternative digital or mixed-

signal systems for AI applications.

Cryogenic computing 

Cryogenic electronics holds promise for high-performance 

computing, as CMOS devices at a very low temperature 

(e.g., 6K) have Energy-Delay characteristics that are six times 

better than at 300K. Moreover, the transistors subthreshold 

slope gets three times steeper, the carrier mobility within 

the devices improves, and the resistivity of interconnects 

is reduced20. To take advantage of the CMOS performance 

boost at cryogenic temperatures, new gate-stack and 

interconnect technologies need to be deployed21.

Spin logic 

Spin logic devices, one of the alternatives to CMOS transistors, 

use magnetic fi eld orientation to represent information. It is 

suggested that total power consumption for spintronic devices 

can be less than CMOS, while retaining high throughput 

(Figure 5.8)22. Magnetoelectric spin-orbit (MESO) devices23 

can have multiple input current levels, which make them a 

potential candidate for analog circuits. Low-voltage spintronics 

can demonstrate stochastic switching activity and can be used 

to implement Shannon-based computing. Also, spintronic 

devices can mimic the functionality of spiking neurons.

Improving materials to sustain the compute 
trajectory

The driving factors for ICT design are power, performance, 

area, and cost. As critical dimensions approach atomic 

length scales, there are not only lithographic challenges, 

but also other fundamental ones associated with the 

patterned features fi delity and mechanical integrity, as well 

as the related enhanced physical and electrical variability. 

A compendium of current areas of design thrust and the 

material processes being explored are shown in Figure 5.924. 
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Figure 5.7: Schematic of optical computing system19 (courtesy of Yichen Chen, Lightelligence)
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Figure 5.8: Energy-delay characteristics of logic 
circuits implemented with magnetoelectric spin-orbit 
(MESO) devices as compared with CMOS22 (courtesy 

of Dmitri Nikonov and Ian Young, Intel. Corp.)

CMOS possesses higher switching speed that continues to improve with scaling. 
MESO devices energy scales better, but speed is limited by the magnet.

Key areas of focus and follow-on research

Reaching new highs for deterministic high-performance 

computing capabilities and AI cognitive capabilities, 

along with orders of magnitude improvements in energy 

effi  ciency on such workloads, will require signifi cant research 

investments on multiple but synergistically interlocked areas. 

Needed research areas include new types of information 

representation and processing, new compute paradigms like 

high-dimensional computing or Shannon-inspired statistical 

computing, and related research on generalized processor 

engines. Those areas explore new building blocks and 

interconnect fabrics that press against the fundamental 

limits of advanced logic and memory technologies and 

their operating conditions. Device (transistor and memory) 

research must focus on enabling added technology 

functionalities while minimizing complexity. This would 

include charge-based and non-charge-based devices (e.g., 

spintronics, photonics, and others), as well as new materials 

and processes to related logic-and-memory building blocks and 

dense, high-speed, and low-energy interconnect fabrics.

Figure 5.9: Drivers and technologies for better power, performance, area, and cost Scaling24 (courtesy of Robert Clark, Tokyo Electron)
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5.4. Artifi cial Intelligence and Brain-inspired Computing
Overview and needs

Artifi cial Intelligence (AI) is expected to be one of the next 

major disruptive technologies. It will aff ect the way we access 

and analyze information, the way we teach, and the way 

we learn or enhance our knowledge. However, the current 

state of AI is characterized by an extensive use of high-

performance computational resources and by large memory 

footprint, compute load, and energy cost. For example, 

today’s high-performance GPU-based object-recognition 

engines require 1-10 J/frame, which results in system power 

consumption of tens to hundreds of watts. Also, today’s 

inference machines often require tens of GB of local memory. 

As a result, many AI applications are bounded to datacenter 

environments, that are less  resource-constrained, than 

network edge computing resources. Likewise, specialized 

systems that support critical applications, such as autonomous 

driving, require interaction and communication of multiple 

components , which approach datacenter complexity. As we 

proceed with more advanced AI engines and applications, 

resources and energy consumption may become prohibitive 

at both the datacenter and at the network edge. 

Many corporations in the communications and sensors space 

have now invested in the seamless integration of AI into 

ubiquitous computing. Applications ranging from Internet 

of Things (IoT) to massive Machine Type Communication 

(mMTC) in 5th generation wireless communication (5G) 

suite are immensely demanding in terms of computation 

and networking resources (see Chapter 3). To this end, the 

physical design of High-Performance Computing (HPC) 

systems is evolving to enable high data-transfer rates to serve 

researchers’ and organizations’ with requirements to train 

models that combine simulations with the vast infl ux of digital 

data. The fusion of AI and HPC is made possible by availability 

of ever-increasing data. This is summed up in Figure 5.10.

The brain provides a wide range of complex cognitive capabilities 

that would be invaluable to implement in a computing system, 

and it does so rapidly and at extremely low power, despite 

operating at the relatively slow timescales of organic 

material. The brain achieves these benefi ts by using a 

combination of unique neural algorithms, a confi gurable and 

adaption-compatible architecture that relies on event-based 

communication, and device “technology” (neurons and synapses) 

that is analog in behavior, confi gurable, and three-dimensional.

A convergence or integration of computing models may drive 

the development of neuromorphic or brain-like architectures, 

which are expected to be a signifi cant component of future 

compute systems. Living systems like the human brain can 

be viewed as an information processor that is extraordinarily 

effi  cient in the execution of its functions, consequently it is a 

good reference for new information-processing technologies. 

Figure 5.11 lays out a convenient roadmap26 that points 

to the current AI development and projects ultimately 

bridging the gap between artifi cial intelligence and natural 

intelligence, in terms of energy effi  ciency. 

High-dimensional (HD) representation for brain-
inspired computing

HD information representation as described in Section 5.3 

above is the basis of a corresponding computing architecture 

that may enable performance and energy effi  cient attainments 

of brain-like cognitive capabilities relying still on von Neumann 

like computing architectures27. Computing acceleration 

accuracy can both be enhanced, as shown by a classifi cation 

experiment comparing HD computing versus support vector 

machines28. (See Table 5.1)
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Figure 5.10: The fusion of Artifi cial Intelligence and High-
Performance Computing is made possible by an increased 
production of data25 (courtesy of Fred Streitz, DOE/AITO).

Table 5.1: Comparison of HD computing versus 
support-vector machine (adapted from28)

ARM Cortex M4

Kernel Cycles (k) Accuracy (%)

High-dimensional computing 12.35 90.70

Support-vector machine 25.10 89.60
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Neurons and neuromorphic computing

Neurons are excitable in nature. This means that they produce 

electrical events called action potentials, which are also known 

as nerve impulses or spikes. Spikes are the basic currency of 

the brain. They allow neurons to communicate with each other, 

computations to be performed, and information to be stored. 

Any time a neuron spikes, neurotransmitters are released from 

hundreds of its synapses, resulting in communication with 

hundreds of other neurons29. 

There is a push to emulate this behavior in computing. Because 

it is event-driven, it is triggered only when the threshold 

voltage is achieved and not at each propagation cycle, which 

means that it expends energy only when the neuron crosses 

the threshold and is reliable. It is robust to noise and does not 

accidentally spike due to interference. The most important 

advantage is that it is effi  cient over long distances, as neurons 

often project across the brain or whole body30.

Neuromorphic hardware is an electronic circuitry that mimics 

the natural biological structure of the nervous system. In 

contrast to a traditional von Neumann architecture, which 

has a powerful logic core and operates sequentially on data 

fetched from memory, neuromorphic computing distributes 

both computation and memory among a number of relatively 

primitive neurons that communicate with other neurons31. 

Depending on the application, it can either be brain-inspired 

hardware to support spiking, or deep-neural-networks 

hardware that uses back-propagation algorithms. Von 

Neumann hardware is fast, serial, power hungry, and dense in 

time. Neuromorphic hardware provides improvements because 

it is real time, power effi  cient, parallel, and sparse in time32. 

Because there is less communication, less computation, and 

fewer memory lookups, using spikes in neural networks is 

more effi  cient.

A grand challenge in the realization of neuromorphic 

computing is the ability of a compute engine to learn from 

unstructured stimuli, with energy effi  ciency comparable 

to the human brain. This involves the realization of 

Spiking Neural Networks (SNN)33 in which a neuron can fi re 

independently of other neurons and, thereby, send pulsed 

signals that directly change the electrical states of those 

other neurons. This could then elegantly encode information 

within these signals and their timing, and in the process, as 

well as simulate natural learning mechanisms by dynamically 

remapping the synapses between these artifi cial neurons. 

The advances in such frameworks may be also bolstered by 

increased development of less-power-hungry quantum and 

analog computing and system architectures, which could make 

their transition from research to production more appealing. 

Current examples of brain-inspired computing chips include 

the IBM TrueNorth34 and Intel Loihi35.
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Figure 5.11: Roadmap for the development of hardware to bridge capabilities of Artifi cial Intelligence (AI) 
and Natural Intelligence (NI)26 (courtesy of Anand Raghunathan and Kaushik Roy, Purdue University)
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Understanding the spike-based information 
processing

The current activation level is modeled as a diff erential 

equation and is normally considered to be the neuron’s state, 

with incoming spikes pushing this value higher, eventually 

either fi ring or decaying. Various coding methods exist 

for interpreting the outgoing spike train as a real-value 

number, relying on either the frequency of spikes or the 

interval between spikes to encode information. One of the 

concerns about spiking is that it often requires paying a 

time penalty. However, this is not always the case. There 

are several coding schemes that are time advantageous by 

implementing fast threshold gate circuit algorithms on spike 

hardware. An example is training deep neural networks for 

binary communication using the Whetstone method28, which 

allows the use of spiking communication with no time penalty 

and minimal accuracy reduction. This was used to train deep 

neural networks for binary communication36. During the 

training process, the activation function at each layer is slowly 

refi ned to the threshold activation. Many other methods for 

training spiking neural networks exist, such as the temporal 

dithering method37, which can eff ectively interpolate between 

spiking and non-spiking coding schemes, has no time penalty 

beyond the simulation time-step, has mathematically proven 

guarantees, and is interoperable with networks trained using 

deep learning and/or the Neural Engineering Framework.

Neural algorithms

The capabilities of spiking can be leveraged by developing 

algorithms that use time in computing. While spiking lowers 

the precision of communication, this precision is sometimes 

unnecessary or can be compensated for in other ways. 

Neuroscience-constrained algorithms that incorporate 

a broad range of neural plasticity and dynamics are still 

unexplored from an algorithms’ perspective (Table 5.238). 

This suggests that brain-inspired hardware may enable new 

algorithmic capabilities that extend far beyond the deep 

learning technologies in use today39. Further, it is increasingly 

recognized that neurons can be treated as powerful logic 

gates. Since algorithms are circuits, they become a model 

of parallel computation, energy effi  cient because of event-

driven communication and high fan-in logic. For example, 

stochastic diff erential equations using Monte Carlo simulations 

and many classes of graph analytics are solvable by spiking 

circuits40. 

Brain-inspired algorithms provide unsupervised learning 

capabilities and novel unseen classes. However, the 

unsupervised algorithms are still not as good at classifi cation 

as back propagation-based algorithms. Spike algorithms use 

less energy, but the energy to convert information to spikes 

must be included to the total energy count in cases when the 

information representation is non-spike based41. 

TrendChallengeGrand Challenge Promising Technology

Table 5.2: Neural algorithms38
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Remarks on the human brain versus computers

The fi nal goal for brain-inspired computing is the ability to 

mimic human behavior, which goes beyond computation to 

recognition, reasoning, and expression of feelings42. Modeling 

the brain’s representations with holistic hypervectors has 

been justifi ed on several grounds, including the size of neural 

circuits, the brain’s tolerance for variation and noise in the 

input signal, and robustness against component failure. 

Current systems can’t function like the human brain. A 

fi eld where mimicking the human brain might be important 

is in autonomous vehicles, as it is emotion that creates a 

faster reaction to danger. Common sense would be one of 

the most diffi  cult things to implement, because it requires a 

large amount of information. Overall, to be able to mimic the 

human brain, computers need to “understand” others’ goals 

and intentions and be able to adapt based on circumstances. 

It should also be able to develop a conceptual model of task 

and a mental model of others42. 

AI engines

The industry has managed to progress past the production 

of general-purpose processors, advanced GPUs, and AI 

accelerator chips to now give way to approximate computing 

hardware. Approximate computing43 refers to the tradeoff  

in eff ort expended with computation quality. It has become 

pervasive in newer CPUs, GPUs, FPGAs, and memory. A key 

issue to be addressed is the memory access energy, which 

is about three orders of magnitude in excess of compute 

energy. This constraint underscores the inconvenience of 

moving data to the CPU for computation and makes near-

memory computing44 (NMC) imperative.

That said, the need for precision-scaling neutralizes the gains 

from current accelerators’ near-memory compute. Research 

is underway to design memory arrays that exploit parallelism 

to lower data-movement cost. Critical evaluations of the 

performance of binary, ternary, and super-ternary (analog) in-

memory computing with resistive switching45 are being done. 

This in-memory computing requires better design of crossbar-

based programmable architectures and peripheral circuits46. 

It can be realized by storing data in RAM and processing 

it in parallel across a cluster of computers. Obviously, this 

development in hardware should also be complemented with 

greater development in AI programming frameworks like 

graph networks and Causal/Explainable AI47 to yield ‘co-design’ 

development that could achieve greater workload capabilities. 

The expected parallel developments in both hardware 

and algorithm streams are outlined in Figure 5.12 and are 

exemplifi ed by Cerebras Systems’ CS-1 ‘wafer-scale-system’48.
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Figure 5.12: Evolution of newer generations of AI hardware and algorithms to enable 
co-design opportunities26 (courtesy of Anand Raghunathan, Purdue University)
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Emerging non-volatile memory 

It is seen that deep learning algorithms in cloud-based 

systems are very power hungry. In this regard, edge systems49 

that support Internet of Things (IoT) networks could perform 

local computing at the sensor node and consume less area 

and power, while realizing adaptive transfer learning and 

processing of continuous data. It is hoped that analog 

computing realized by Emerging Non-Volatile Memories 

(eNVMs) capable of 100 Tera-Operations/Second/Watt (TOPS/

watt) could help in this regard. This would involve better 

design of devices like Filamentary and Non-Filamentary 

Resistive-change RAMs (RRAMs), crystalline/amorphous Phase-

Change Random-Access Memories (PCRAMs), and Ferroelectric 

Transistors (FeFETs), some structures of which are shown in 

Figure 5.1350. Currently, eNVMs are still wanting in terms 

of energy/latency metrics and cycling endurance when 

compared with SRAMs in advanced technology nodes.

Better circuit-level simulators are being developed to 

benchmark the area, latency, power consumption, and 

leakage power from these building blocks for AI Inference 

Engines for various technology nodes. These would help 

reduce, for instance, the dynamic energy expended in 

transitions in these eNVM memory cells and help understand 

the various factors aff ecting throughput, latency, and 

inference accuracy. CAD tools would also increase the 

appreciation for the impact of factors like device-to-device 

variation, on-state resistance, programming voltage, write 

endurance and its degradation during online training, and 

retention failure on inference algorithms. These would also 

address the greater diffi  culties in write capability of eNVMs, 

in comparison with read capability.

Key areas of focus and follow-on research

In the US, the Department of Energy (DOE) is focused on 

the research, development, and use of AI for accelerating 

scientifi c discovery51. AI can also be used to address power grid 

disruptions, fraud and anomaly detection, nuclear deterrent 

assurance, and other challenging problems. The DOE plans to 

continue partnerships with academia, industry, and other 

government agencies to develop the tools and hardware 

to compete eff ectively against growing leadership in 

adversarial countries and help reduce the AI expertise gap in 

government. Overall, there is a strong need for foundational 

research in Scientifi c Machine Learning and AI (Figure 

5.14)52. Strong foundations lay the groundwork for greater 

AI-enabled capabilities in massive scientifi c data analysis, 

machine learning-enhanced modeling and simulations, and 

intelligent automation and decision-support for complex 

processes and systems. 

In 2019, the DOE and National Labs conducted four ‘AI 

for Science’ townhalls with a fi nal objective of obtaining 

community consensus to guide the strategic planning for 

scientifi c AI for the next fi ve to 10 years. These townhall 

meetings on AI for Science were documented in a DOE 

report16. Since algorithms like deep learning, as data-fi tted 

functions between inputs and outputs, may have reached 

a stagnation point in their potential, it is necessary for the 

National Labs to drive greater collaboration with industry and 

academia to co-design heterogeneous computing solutions 

that integrate AI, data analysis, and scientifi c computing 

hardware designs. Algorithms and computer architectures 

for AI are evolving quickly and growing more diverse 

(e.g., neuromorphic, quantum, brain-inspiring computing). 

Emerging trends indicate a need for specialized device 
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Figure 5.13: Structures of analog devices used in AI Engines50 (courtesy of Shimeng Yu, Georgia Tech)
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architectures at diff erent scales for fi ve major use cases: (1) 

AI research and development prototyping; (2) offl  ine training 

of AI models in production; (3) inference on deployed servers; 

(4) inference deployed at the edge of a network; and (5) 

online learning on servers and at the edge. An important 

key to success is a strategy that leverages community and 

industry investments so that AI algorithms and hardware 

serve the DOE science mission.

Importantly, neuromorphic computing is still a maturing 

technology. Because it represents paradigm shifts in math, 

algorithms, architecture, and hardware, it is important to 

consider the cross-technology stack implications of modifying 

each technology in isolation from others. A Roadmap for 

reaching the potential of brain-derived computing has been 

recently discussed53. Signifi cant technological opportunities 

exist in the following areas:

• Learning from devices to algorithms—How can the 

properties of an online adaptive device be realized within a 

brain-inspired learning algorithm?

• Achieving brain-like connectivity—Neurons have very 

high fan-in/fan-out, and they connect to thousands of 

other neurons using point-to-point connections in three 

dimensions. In contrast, all neuromorphic hardware today 

relies on some form of conventional routing technology of 

spiking events.

• What is the most eff ective hardware architecture for 

leveraging both analog devices and event-based spiking 

communication?

5.5. Large-scale Quantum 
Computing 
Overview and needs

Modern “classical” semiconductor technology is based 

on quantum mechanics. For example, the quantum 

phenomenon of energy bands is a foundational concept of 

all semiconductor devices, from transistors to light-emitting 

diodes (LED). Quantum mechanical tunneling is the basic 

operation mechanism of fl ash memory, while the eff ect 

of quantum confi nement is used in high-electron-mobility 

transistors (HEMPT). 

Other more peculiar quantum eff ects, namely quantum 

superposition and quantum entanglement, have been 

proposed as a foundation for the paradigm of quantum 

information processing that includes quantum computing. 

There are theoretical predictions that quantum computing 

using quantum bits (“qubits”) would result in a signifi cant 

speedup over the current computing technologies for certain 

problems And several small-scale quantum computers (QCs) 

have been demonstrated.

Large-scale QCs will be needed for the realization of complex 

practical tasks. This section addresses the topics of hardware 

realizations of large-scale QCs and the practical potential 

of QCs to defi ne new computing trajectory for broad-

purpose information processing, with orders-of-magnitude 

improvement in energy effi  ciency.
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Figure 5.14: Advances in 6 Priority Research Directions (PRDs) are needed to develop the next generation 
of machine learning methods and artifi cial intelligence capabilities51 (courtesy of Steven Lee, DOE/ASCR).

135



Quantum computing promises 
and challenges

As an emerging technology, quantum 

computing has been gaining 

momentum, and there has been 

signifi cant progress that includes 

recent eff orts towards the goal of 

quantum supremacy54, the point at 

which QCs can solve problems not 

feasible by classical means. 

Similar to classical computers, as the 

number of computing elements (bits 

or qubits) increases, more possibilities 

can be calculated with more accuracy. 

Quantum superposition and quantum 

entanglement are two of the major 

concepts that contribute to the 

enormous potential of QCs. Just 300 

logical qubits would allow for the 

exploration of more combinations 

than the number of particles in the 

universe. To realize a logical qubit, 

multiple physical qubits are needed to 

insure computational robustness. Thus 

a challenge in QC is the realization 

of as many as possible logical qubits 

each comprised of the minimum 

number of physical qubits.

Qubit technologies

There are diff erent types of qubit 

technologies, such as trapped atomic 

ions, neutral atoms, superconducting 

circuits, topological qubits, photonic 

qubits, and semiconductor spins. The 

important metric is the combination 

of qubit coherence and gate quality55. 

Because of their properties, trapped 

ions56 and superconducting qubits56 

appear to be among the most promising 

and prevalent thus far (Figure 5.15). 

While superconducting circuits can 

exploit chip-fabrication processes 

common to conventional VLSI, ion traps 

feature nearly perfect qubit quality and 

replicability. Both systems have been 

shown to satisfy DiVincenzo’s criteria 

for a physical system to implement 

a logical qubit57. Gate operations, 

initializing and reading qubit states, and 

storing operations can all be designed 

to keep the computer functional for the 

execution of quantum gate sequences. 

It is this sense of control that provides 

a measure of confi dence for scaling the 

number of qubits.

Challenges

There are two general challenges in 

the full realization of QCs. First, as the 

QC is scaled, it typically becomes 

more diffi  cult to isolate the system 

from noise in the environment and 

prevent errors (Figure 5.16). Moreover, 

some technologies, especially in the 

solid state, cannot be easily replicated. 

The minute diff erences between 

qubits must be cataloged, and these 
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Figure.5.15. Examples of types of qubits

a) Trapped ion-based qubits with optical control56 (courtesy of ionQ) b) Superconducting qubits55 (courtesy of IBM) 

Figure 5.16: The considerable eff ect of noise in quantum computers58 (courtesy of Q-CTRL) 
The hybrid quantum-classical algorithms (see Figure 5.17) have shown good performance 

in that they provide high accuracy by reducing approximations needed to render problems 
computable and at higher speed61. A potential key advantage is that the quantum computing 

portion can virtually decouple the compute power from energy consumption. This provides the 
capability to encode and manipulate data in exponentially large state spaces at a lower cost.
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diff erences can also drift in time, making it very diffi  cult to 

scale. Such noise in the environment disrupts quantum systems 

and causes errors in the computation through dephasing and 

relaxation58,59,  where analog errors get turned into digital 

errors. The second challenge involves imperfections in the 

control operations of the quantum gates, which are usually 

exacerbated through unwanted crosstalk of the control 

systems and qubits as the system is scaled.

One way to address these challenges is to exploit error 

correction. However, quantum error correction adds 

signifi cant overhead in terms of additional qubits and gate 

operations, in some cases requiring a multiplicative factor 

of 10,000 or more qubits, straining the ability to scale. 

Consequently, in the short term, there has been a focus on 

NISQ (noisy intermediate-scale quantum) systems that can be 

combined with classical computers60.

Superconducting qubit QCs operate at 20 mK, requiring 

signifi cant cooling using a dilution refrigerator, and the 

electronics readouts are done at room temperature, or 

300 K (see Figures 5.18 and 5.19)60. To improve scaling, 

architectures have been proposed that include readouts at 

lower temperatures as depicted in Figure 5.19. Ion trap QC 

systems can be run at room temperature but require a vacuum 

environment for the fl oating atoms in space. These two 

technologies also have complementary challenges to scaling. 

First, superconductors enjoy the ability to fabricate many 

qubits on-chip but have fi nite coherence time owing to their 

noisy solid-state environment. Next, the complex wiring of 

large numbers of qubits and their crosstalk, all in a cryogenic 

environment, cause errors that generally grow as the system 

is made larger. These challenges may be fundamental 

in nature, requiring new approaches to the basic qubit 

materials and their substrates, their interconnects, and 

their refrigeration. Ion trap qubits have negligible qubit 

idle/memory errors, and the qubit technology of isolated 

atoms will never be improved, as they are perfectly replicable 

atomic clocks. Here the challenge is the scaling of the classical 

controllers, typically laser beams that must be engineered to 

address the individual atoms in the vacuum chamber.

Comparing QCs

Given the diff erences in types of qubits and control 

requirements, it is often diffi  cult to compare QCs. One 

gauge sometimes used is the number of qubits. However, 

comparing QCs by counting qubits is not accurate because it 
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Figure 5.17: Quantum cloud services with hybrid quantum/classical algorithms61 (courtesy of Rigetti)
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is the quality of the qubits and control 

mechanisms that truly count. It is 

more helpful to think of the number of 

equivalent “logical qubits,” defi ned to 

be qubits that have a coherence time 

long enough to be usable by a quantum 

gate. Another metric that can be useful 

to assess a QC is Quantum Volume, 

which is a metric that depends on three 

dimensions: number of qubits, error 

rate, and qubit connectivity. 

Applications

QCs are not expected to completely 

replace classical computers, but 

rather they will be used for a class of 

applications that optimize functions 

by simultaneously sampling all inputs. 

Also, due to the fundamental nature 

of quantum systems, a natural area of 

study will be molecular simulations, 

with applications ranging from design 

of materials (e.g., batteries) to target 

proteins in drug discovery. This is 

in addition to factorization (Shor’s 

algorithm) with applications in several 

domains, including decoding of 

encrypted data.

Key areas of focus and follow-
on research

In summary, QC is a paradigm that is 

slowly being realized, with a number 

of diffi  cult engineering and science 

challenges that remain unfulfi lled. 

The next big leap in quantum 

computing will require much higher 

levels of investment in QC education 

and R&D. Colleges and universities 

should consider developing additional 

undergraduate courses on the theory 

and practice of QC in the same vein 

that logic systems and computer 

programming courses are off ered as 

required or electives depending on 

the major. There is also a need for 

additional R&D funding programs that 

attract the brightest minds to this 

important fi eld of computing.

With applications ranging from 

combinatorial optimization to molecule 

ground state calculations, the future 

of QC looks promising. To make QC 

practical, we need to make them 

much more scalable. Indeed, scalability 

remains the key challenge given the very 

high error rates that we are seeing in 

today’s modest QCs. Qubit and system 

control, as well as robustness and 

related error tolerance are among the 

key drivers. Scalability considerations 

include parameters such as: noise 

budget, power budget per qubit, physical 

dimensions, replicability, and bandwidth 

for multiplexing57. These parameters are 

not necessarily separate components of 

the puzzle but very much interrelated. As 

of the date of writing of this Chapter, 

there is no single preferred pathway 

identifi ed for scaling as it very 

much depends on the type of qubit 

implementation technology. It remains 

to be seen which technology or set of 

technologies will win out.
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Figure 5.18: Quantum computer setup59 (courtesy of Edoardo Charbon)

Figure 5.19: Proposed architecture for scalability59 (courtesy of Edoardo Charbon)

138



5.6. Summary: New Compute Trajectories for Energy-effi  cient 
Computing
Overview

The total energy consumption by computing continues to grow 

exponentially, which may become unsustainable even before 

2030. Thus, radical improvement in the energy effi  ciency of 

computing is needed. The Grand Goal of computing research 

should be the discovery of computing paradigms/architectures 

with new computing trajectory, providing >1,000,000x 

improvement in energy effi  ciency. It is becoming increasingly 

clear that in future information-processing applications, 

synergistic innovations—from materials and devices to 

circuits and system-level functions using unexplored physical 

principles—will be a key to achieving new levels of energy 

effi  ciency and performance. Paradigm-shifting new solutions 

will be needed for future computers, with major innovations 

in devices, circuits, and architectures. New approaches to 

computing will be necessary, such as in-memory compute, special 

purpose compute engines combined in a heterogeneous manner, 

diff erent AI platforms, brain-inspired/neuromorphic computation, 

quantum computing, and other solutions.

In summary, revolutionary changes to computing are needed 

very soon. This necessitates a completely new way of thinking 

to realize a solution space with multi-decade longevity 

replacing the von Neumann/CMOS-based approach that has 

served the ICT community well for over half a century. This 

report is intended to stimulate collaborative research, from 

materials to architecture, aiming at establishing revolutionary 

paradigms to support future energy-effi  cient computing for the 

vast range of future data types and heterogeneous workloads.

The Computing Grand Goal is to discover computing 

paradigms/architectures with a radically new computing 

trajectory, demonstrating >1,000,000x improvement 

in energy effi  ciency. Changing the trajectory provides 

immediate improvements and establishes a buff er of 

many decades (as shown in Figure 5.1). This would be 

much more cost eff ective than attempting to dramatically 

increase the world’s energy supply. 

Research recommendations summary

Reaching new highs for deterministic high-performance 

computing capabilities and AI cognitive capabilities, 

along with orders-of-magnitude improvements in energy 

effi  ciency on such workloads, will require signifi cant research 

investments on multiple but synergistically interlocked areas. 

These include: 

• Advancing the theoretical basis for computing performance

• New types of information representation and processing, 

as well as new compute paradigms

• High-Dimensional computing

• Shannon-inspired statistical computing

• Heterogeneous computing that integrates general 

purpose processors with specialized accelerators for: 

AI/ML, Data Analytics, Neuromorphic Computing, and 

Quantum Computing

• Exploring new building blocks and interconnect fabrics that 

press against the fundamental limits of advanced logic and 

memory technologies 

• device (transistor and memory) research enabling added 

technology functionalities while minimizing complexity

• charge-based and non-charge-based devices 

• spintronics, photonics, and others

• dense, high-speed, and low-energy interconnect fabrics

• new materials and processes 

• Establishing partnerships among academia, industry, and 

government agencies to help reduce the AI expertise 

gap and develop HPC, AI/ML and data analytics tools and 

hardware to compete eff ectively with adversarial countries

• Foundational research in Scientifi c AI/ML, data analytics 

and HPC

• optimization of fundamental principles of domain-

awareness

• eff ective use of structured high-dimensional data

• learning-assisted uncertainty quantifi cation

• Driving greater collaboration with academia, DOE 

National Labs, and other US Government agencies in AI 

hardware design and algorithmic co-optimization, since, as 

optimization functions between inputs and outputs

• Applying machine-learning to multimodal data and 

optimally guiding data acquisition

• intelligent automation to enhance exploration of 

the decision-space and learning-based resource 

management capabilities 
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Appendix: Global Compute 
Inventory 

General-purpose computing has advanced to an extent where 

we are able to perform many classes of complex calculations and 

simulations that are mapped with heterogeneous programming 

models to systems with CPUs and GPUs integrated with a 

communication fabric. The overall computational performance 

of CPU is often measured in (millions of) instructions per second 

(IPS or MIPS) that can be executed across a standard set of 

benchmarks. In turn, GPU and supercomputer performance is 

typically measured in FLOPS (Floating Points Operations Per 

Second). While there is no straightforward formula for the 

conversion between FLOPS and MIPS, and the two types of 

metrics are regarded as complementary, for the purposes of this 

study, we utilized one single metric for computing performance. 

Following Hilbert and Lopez63, we choose the Dhrystone VAX 

MIPS as the unit of measurement because of the availability of 

relevant and consistent statistics. According to62:

As can be seen in Figure A1, the world’s technological eff ective 

capacity to compute information is ~3×1015 MIPS in 2020, and 

is projected to rise to ~1022 MIPS in 2040 (based on research by 

Hilbert and Lopez62).

Another indicator of the ultimate performance of an 

information processor, realized as an interconnected system 

of binary switches, is the maximum binary throughput (in 

bit/s or BITS), that is, the maximum number of on-chip binary 

transitions per unit time. It proportional to the product of the 

number of devices (transistors) Ntr with the clock frequency of 

the microprocessor fclk:

Where α is the activity factor of a digital circuit (here we 

assume α=0.01)

αBITS =
Nsw

tsw

∙ = α Nsw∙ fclk∙ (A2)

• Understanding factors contributing to analysis of ML,

such as model reduction and multi-fi delity modeling,

computational complexity and optimization, and statistics

and uncertainty quantifi cation

• ethical, legal, and societal implications of AI

• develop better shared public datasets and

environments for AI training

• strengthen public-private R&D partnerships

• Neuromorphic computing, representing paradigm shifts in

math, algorithms, architecture, and hardware

• consider the cross-technology stack implications of

modifying one technology in isolation from others

• Signifi cant technological opportunities

• learning from devices to algorithms

• realize the properties of an online adaptive device

within a brain-inspired learning algorithm

• achieving brain-like connectivity

• neurons have very high fan-in/fan-out, connecting

to thousands of other neurons using point-to-point

connections in three dimensions

• all neuromorphic hardware today relies on some form 

of conventional routing technology of spiking events

• fi nding the most eff ective hardware architecture for

leveraging both analog devices and event-based spiking

communication

• Scalable quantum computing

• scalability considerations include noise budget, power

budget, physical dimensions, and bandwidth

• Creating a full stack that includes the chip, system,

software, and cloud access

• Developing hybrid quantum-classical algorithms in both

superconducting and ion trap systems

The theoretical basis for computing performance is less 

solid than the theoretical basis for information storage 

and communication, like the Shannon limit and others. It is 

not easy to quantify the computational power of compute 

engines. There are multiple characteristics like MIPS, MOPS, 

and FLOPS, and there is no straightforward formula for the 

conversion between them62.

1 FLOPS ≈ 3 IPS (A1)
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Figure A1: Trend in world’s technological information 
processing capacity (Based on research by Hilbert and Lopez62)
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General-purpose CPUs

For general-purpose CPUs, there is a strong correlation between 

the overall computational performance measured in (M)IPS and 

the system’s binary throughput (BITS), measured in bit/s, which 

represents a characteristic number of “raw” binary transitions in 

the system needed to implement an instruction, as can be seen 

in Figure A2, and to a good approximation:

For a variety of CPU chips produced in 1971-2019 by diff erent 

companies, k~0.1 and p~⅔ with a high degree of accuracy (the 

determination coeffi  cient R2=0.96). For details, see Table A1. 

This strong correlation suggests a possible fundamental law 

behind the empirical observation. It is also instrumental for 

speculations about future developments.

Graphics processing units (GPU)

The current trend is toward the increasing use of GPU for 

diff erent computational tasks, including general-purpose 

computations and machine learning/artifi cial intelligence. 

Figure A3 presents the percentage of GPU in the world’s 

technological installed compute capacity, as estimated by 

this group based on62.

For a variety of GPU chips produced in 1995-2018 (see Table 

A2), there is also a strong correlation between the overall 

computational performance (measured in FLOPS or MIPS) and 

the system’s binary throughput (BITS), measured in bit/s (see 

Figure A4). And to a good approximation, it is also described 

IPS = k(BITS)p (A3)

by (A3) with k~10-3 (when converted to the IPS metrics 

using (A1)) and p~0.85 with a high degree of accuracy (the 

determination coeffi  cient R2=0.99).

To account for both CPU and GPU in the world’s technological 

installed capacity to compute information, we defi ne “eff ective” 

values for the parameters k and p in (A2) as:

where nGPU and nGPU are, respectively, the relative proportions 

of GPUs and CPUs in the world’s installed compute 

infrastructure (nGPU+nGPU=1).

nGPU kGPU nCPU kCPU+=k

nGPU pGPU nCPU pCPU+=p
(A3)
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Figure A2: A 1971-2019 trend for computational performance in IPS as a function of binary information throughput in bit/s for CPU

Figure A3: Percentage of GPU in the world’s 
technological installed compute capacity
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Global “raw” bit transitions per second:

From (A2):

Global “raw” bit transitions per year:

(y is computing engine utilization factor, here we assume 

y=0.005)

The resulting total number of binary transitions required for 

computing per year is shown in Figure A5. For example, for 

the scenario, where all computations are performed by CPUs, 

the total number of “raw” binary transitions required for 

computing is ~1037 bits/y in 2020 and could reach ~1046 bits/y 

by 2050. A scenario with an increasing use of GPU for diff erent 

computational tasks, along with CPU, suggests ~1036 bits/y in 

2020 and ~1042 bits/y in 2050. The dashed middle line on Figure 

A5 is the geometric mean of the two scenarios, which can be 

regarded as a “nominal trend” that projects ~1044 bits/y in 2050.

Total energy of computing

The total energy of computing per year, Etot, can be obtained 

by multiplying the global “raw” bit transitions per year (BITY) 

and the energy per one bit transition Ebit:

The energy per one-bit transition in compute processor units 

(e.g., CPU, GPU, and FPGA) has been decreasing over last 40 

years (as manifested by Moore’s law), and is ~10 attojoules 

or 10-17 J in current processors. However, the demand for 

computation growth is outpacing the progress realized by 

Moore’s law. In addition, Moore’s law is currently slowing 

down as device scaling is approaching fundamental physical 

limits. The physics-based theoretical lower limit, known as the 

Landauer limit for binary switching, is 3x10-21 J/bit.

BITY = y ∙ BITS ∙ 3600 ∙ 24 365 (A5)

BITS =
α

k
∙

1

(IPS)p (A4)

Etot = BITY ∙ Ebit (A6)
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Figure A4: A 1995-2018 trend for computational performance in 
FLOPS as a function of binary information throughput in bit/s for GPU

Figure A6: Energy per bit transition in compute processor units

Figure A5: The total number of “raw” binary transitions required 
for computing (the top solid line represents a hypothetical 

scenario, where all computations are performed by CPUs; the 
bottom solid line represents a scenario with an increasing use 
of GPU for diff erent computational tasks, along with CPU; the 

dashed middle line is the geometric mean of the two scenarios)
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Processor Year MIPS Clock frequency, MHz Transistor count

Intel 4004 1971 0.092 0.74 2,300

Intel 8080 1974 0.5 2 6,000

MOS Technology 6502 1975 0.5 1 3,510

Motorola 68000 1979 1.00 8 68,000

Intel 286 1982 2.66 12.5 134,000

Motorola 68020 1984 4.00 20 200,000

Intel 386DX 1985 11.4 33 275,000

Motorola 68030 1987 11 33 273,000

Motorola 68040 1990 44 40 1.20E+06

DEC Alpha 21064 EV4 1992 300 100 3.10E+06

Intel Pentium Pro 1996 541 200 5.50E+06

IBM PowerPC 750 1997 525 233 6.35E+06

Intel Pentium III 1999 2050 600 9.50E+06

AMD Athlon 2000 3560 1200 2.20E+07

AMD Athlon XP 2500+ 2003 7530 1830 5.43E+07

Pentium 4 Extreme Edition 2003 9730 3200 5.50E+07

VIA C7 2005 1800 1300 2.50E+07

AMD Athlon FX-57 2005 12000 2800 1.14E+08

AMD Athlon 64 3800+ X2 (Dual core) 2005 1460 2000 1.54E+08

Xbox360 IBM "Xenon" (Triple core) 2005 1920 3200 1.65E+08

PS3 Cell BE (PPE only) 2006 10200 3200 2.41E+08

AMD Athlon FX-60 (Dual core) 2006 18900 2600 2.33E+08

Intel Core 2 Extreme X6800 (Dual core) 2006 27100 2930 2.91E+08

Intel Core 2 Extreme QX6700 (Quad core) 2006 49200 2660 5.82E+08

P.A. Semi PA6T-1682M 2007 88000 2000 1.10E+07

Intel Core 2 Extreme QX9770 2008 59500 3200 8.00E+08

Intel Core i7 920 2008 82300 2660 7.31E+08

Intel Atom N270 2008 3850 1600 4.70E+07

AMD Phenom II X4 940 2009 42800 3000 7.58E+08

AMD Phenom II X6 1100T Thuban 2010 78400 3300 9.04E+08

Intel Core i7 Extreme Edition 980X 2010 148,000 3330 1.17E+09

Intel Core i7 2600K 2011 128,000 3400 1.16E+09

AMD E-350 2011 10000 1600 3.80E+08

Intel Core i7 875K 2011 92100 2930 7.74E+08

AMD FX-8150 2011 109,000 3600 2.00E+09

Xeon E3-1290 v2 2012 100,000 3700 1.40E+09

Ivy Bridge-EX-15 2013 200,000 2800 4.30E+09

i7-5960X 2014 238,000 3000 2.60E+09

Intel core i7 6950X 2016 334,000 3000 3.40E+09

AMD Ryzen 1800X 2017 305,000 3,600 4.80E+09

AMD Ryzen2 2700X Pinnacle Ridge 2019 334,000 3,700 4.80E+09

Table A1. A 1971-2019 CPU IC summary
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Processor Year FLOPS Clock frequency, MHz Transistor count

STG-2000 1995 1.92E+08 75 1.00E+06

Riva 128 1997 1.60E+09 100 4.00E+06

Riva TNT 1998 2.88E+09 90 7.00E+06

Riva TNT2 Ultra 1999 4.80E+09 150 1.50E+07

GeForce 256 DDR 2000 7.68E+09 120 1.70E+07

GeForce3 Ti500 2001 1.54E+10 240 5.70E+07

GeForce4 Ti4600 2002 1.92E+10 300 6.30E+07

GeForce FX 5900 Ultra 2003 2.88E+10 450 1.35E+08

GeForce 6800 Ultra Extreme 2004 1.15E+11 425 2.22E+08

GeForce 7800 GTX 2005 1.65E+11 430 3.02E+08

GeForce 7950 GX2 2006 3.84E+11 500 5.56E+08

S870 GPU Computing Server (4xG80) 2007 3.46E+11 600 6.81E+08

S1070 Server 500 Confi guration (4xGT200) 2008 6.91E+11 602 1.4E+09

S2050 GPU computing server (4xGF100) 2011 1.03E+12 575 3.10E+09

K20X GPU Accelerator (1xGK110) 2012 3.94E+12 732 7.08E+09

K40 GPU Accelerator (1xGK110B) 2013 4.67E+12 745 7.08E+09

K80 GPU Accelerator (2xGK210) 2014 3.58E+12 562 7.10E+09

M60 GPU Accelerator (2xGM204) 2015 4.25E+12 899 5.20E+09

P100 GPU Accelerator (1xGP100) 2016 1.01E+13 1,300 1.53E+10

V100 GPU Accelerator (1xGV100) 2017 1.67E+13 1,130 2.11E+10

T4 GPU Accelerator (1xTU104) 2018 1.12E+13 1,620 1.36E+10

Table A2. A 1995-2018 GPU IC summary63
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